On the R/P-LWE equivalence for cyclotomic subextensions and cryptoanalytic implications

Iván Blanco Chacón

University of Alcalá

04/04/2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Summary

Motivation

- The RLWE and PLWE cryptosystems
- ► RLWE/PLWE equivalence: the cyclotomic case
- RLWE/PLWE equivalence: the maximal totally real subextension

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Some cryptoanalysis

Motivation: NIST figures (Third round, April 2022)

Category	Number of candidates
Code-based	3
Lattice-based	6
Multivariate-based	2
Elliptic curve-based	1
Hash-based/other	2

Table: NIST Round 3 finalists.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Motivation: Lattice-based cryptography

Based on the unfeasibility (proved or conjectural) of different problems dealing with lattices:

Shortest Vector Problem and Closest Vector Problem: proved NP hard over the class of arbitray algebraic lattices (if no extra structure is assumed)

- NTRU (Hoffstein, Piffer, Silverman 1996): arithmetic on $\mathbb{Z}[x]/(x^n-1)$.
- ▶ LWE (Regev 2005): linear algebra in \mathbb{Z}^n (fixed one basis)
- PLWE (Stehlé, 2009): lattices attached to quotient polynomial rings.
- RLWE (Lyubashevsky, Peikert, Regev, 2010): lattices attached to number fields.

Motivation: Lattices (definitions and examples)

Definition

A lattice is (Λ, ρ) where Λ is a torsion free finitely generated abelian group and $\rho : \Lambda \to \mathbb{R}^n$ is a group monomorphism. We say that Λ has full rank if its rank is n.

- Example 1: $\Lambda = \mathbb{Z}^n$, $\rho =$ inclusion in \mathbb{R}^n .
- Example 2: K number field of degree n = r + 2s, r real embeddings, s pairs of complex embeddings, Λ = O_K ring of integers, ρ : Λ → ℝ^r × ℂ^{2s}, the canonical embedding.
- ► Example 3: $\Lambda = \mathbb{Z}[x]/(f(x))$ with $f(x) \in \mathbb{Z}[x]$ monic irreducible of degree n, $\rho\left(\sum_{k=0}^{n-1} a_k x^k\right) = (a_0, ..., a_{n-1})$ (coefficient embedding).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The RLWE cryptosystem: foundations

K number field of degree n, O_K ring of integers.

Definition (Ring Learning With Errors oracles)

Let q be prime, $s \in O_K/qO_K$, $\chi \neq O_K/qO_K$ -valued random variable. A RLWE-oracle is an algorithm $A_{s,\chi}$ which:

- ▶ samples $a \in O_K/qO_K$ (uniformly) and samples e from χ .
- returns $(a, as + e) \in O_K/qO_K \times O_K/qO_K$.

Definition (The RLWE problem)

- Search version: Given A_{s,χ}, the adversary must recover s by having access to arbitrarily many samples.
- Decisional version: Given A = A_{s,\chi} or uniform, the adversary must decide whether A = A_{s,\chi} or uniform by having access to arbitrarily many samples.

The RLWE cryptosystem: definition (Lyubashevsky, Peikert, Regev 2009) q prime, χ is an O_{κ}/qO_{κ} -valued Gaussian, covariance matrix

bounded entry-wise by $\alpha n^{1/4}$, $\alpha < \sqrt{rac{\log(n)}{n}}$.

- 1. Key generation: choose $a \in O_K/qO_K$ uniformly at random and choose s, e sampled from χ . The secret key will be s and the public key will be the pair (a, b = as + e).
- Encryption: take a plaintext z consisting of a stream of bits and regard it as a polynomial in O_K/qO_K, mapping each bit to a coefficient, say, z ∈ R_q. Choose r, e₁, e₂ sampled from χ. Set u = ar + e₁ and v = br + e₂ + ⌊^q/₂⌋z.
- 3. Decryption: Perform $v us = er + e_2 e_1s + \lfloor \frac{q}{2} \rfloor z$ and round the coefficients either to zero or to $\lfloor \frac{q}{2} \rfloor$, whichever is closest mod q.

The RLWE cryptosystem: discussion

Theorem (Lyubashevsky, Peikert, Regev)

The PLWE cryptosystem is correct (i.e. decryption undoes encryption) and pseudorandom.

Theorem (Lyubashevsky et al for K cyclotomic, Rosca et al for Galois number fields 2017)

There exists a quantum polynomial reduction from γ -SVP over ideal lattices to decision RLWE.

BUT...

 $\gamma\text{-}\mathsf{SVP}$ is not proved to be NP-hard for that $\gamma,$ and even less when restricted to the class of ideal lattices on number fields. Empirical evidence suggests so, but still...

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うんの

The PLWE problem

Instead of working with O_K , use a polynomial ring $R_q = \mathbb{F}_q[x]/(f(x)), f(x) \in \mathbb{F}_q$ monic irreducible. The distribution χ now should take values on R_q . The learning problem with these choices is called PLWE (Polynomial Learning With Errors) Why using PLWE instead of RLWE? Because it is easier to implement on a computer.

PLWE and RLWE are not always equivalent:

- The field may not be monogenic: i.e. O_K ≠ Z[α] (in general, the latter is an order in the former)
- Even if monogenic, for RLWE, O_K is endowed with the Minkowski embedding, $\mathbb{Z}[x]/(f(x))$ with the coefficient embedding and the isomorphism distort the distribution.
- For cyclotomics of 2-power degree, the isomorphism is a scaled isometry, so both problems are equivalent.

RLWE/PLWE equivalence

Assume K monogenic from now on.

We study the equivalence between *RLWE*, attached to $\mathbb{Z}[\alpha]$ with Galois embedding, and PLWE, attached to $\mathbb{Z}[x]$, and the coordinate embedding.

For $g(x) = \sum_{i=0}^{n-1} a_i x^i$, consider the map $\mathbb{Z}[x]/(f(x)) \to \mathbb{Z}[\alpha]$, the last identified with its Galois image:

$$(a_0,...,a_{n-1})\mapsto (\sum_{i=0}^{n-1}a_i\sigma_1(\alpha)^i,...,\sum_{i=0}^{n-1}a_i\sigma_n(\alpha)^i),$$

The transformation is given by multiplication with the Vandermonde matrix $V_f := (\sigma_k(\alpha)^j)$. Hence, the problems are equivalent if the distortion caused by the matrix is poynomial in n.

Want: to study $||V_f||||V_f^{-1}||$, where $||A|| := \sqrt{Tr(A^*A)}$.

RLWE/PLWE equivalence: the cyclotomic case

The *n*-th cyclotomic polynomial:

$$\Phi_n(x) = \prod_{k \in \mathbb{Z}_n^*} (x - \zeta_k) \in \mathbb{Z}[x].$$

Properties:

 $\Phi_n(x)$ is irreducible of degree $\phi(n)$. $K_n := \mathbb{Q}(\zeta)$ is monogenic and Galois. $\mathcal{O}_{K_n} = \mathbb{Z}[\zeta] \cong \mathbb{Z}[x]/(\Phi_n(x))$, but the embeddings may be very different.

Goal: to bound the condition number V_{Φ_n} .

RLWE/PLWE equivalence: the cyclotomic case

For $m = p_1^{e_1} ... p_k^{e_k}$, denote $rad(n) = p_1 ... p_k$. If $\Phi_n(x) = \sum_{i=0}^{\phi(n)} c_i x^i$, denote $A(n) = \max_{i=0}^{\phi(n)} \{|c_i|\}$.

Theorem (B. 2020)

Notations as before. Let k > 1 be fixed and $rad(n) = p_1...p_k$. Then

$$Cond(V_{\Phi_n}) \leq 2rad(n)n^{2^{2k}+k+2}$$

Idea of proof:

- Write the entries in V⁻¹_{Φ_n} as quotients of symmetric polynomials in the *n*-th primitive roots (Rosca-Stehlé-Wallet, 2016).
- Use a bound for A(n) due to Bateman which is polynomial in m once k is fixed.
- Some nasty bounds for the numerators.

RLWE/PLWE equivalence: the cyclotomic case. Sharper bounds

Theorem (B. 2020)

For $n \ge 1$ and $m = \phi(n)$, the following bounds hold for the condition number of cyclotomic polynomial $\Phi_n(x)$:

a) If
$$n = p^k$$
 then $Cond(V_{\Phi_n}) \le 4(p-1)m$.

b) If
$$n = p^l q^s r^t$$
 with $l, s, t \ge 0$, denoting by ε the number of primes diving n with positive power, then $Cond(V_{\Phi_n}) \le 2\phi(rad(n))^{\varepsilon-1}m^2$.

Key inputs: classical bounds for A(n) due to Bang (1895) for 2 primes. Bloom (1968) for 3 primes. Erdös for 4 primes and maybe 5.

RLWE/PLWE equivalence: the general bound Theorem (Barbero, B., Njah, 2021) If $m = p^a q^b r^c s^d$, then $Cond(V_{\Phi_n}) \le 2\phi(rad(n))^3 m^2$.

But finally, the question has been closed for general *n*:

Theorem (Sanna, di Scala, Signorini, 2022)

There exist infinitely many $n \ge 2$ such that

$$Cond(V_n) \ge exp\left(n^{\frac{\log(2)}{\log\log(n)}}\right)/\sqrt{n}.$$

Hence, for each $r \ge 1$, $Cond(V_n) \ne O(n^r)$. Consequently, RLWE and PLWE are not equivalent for general $n \ge 2$.

)⁵.

 K_n^+ = maximal totally real subfield of $K_n = \mathbb{Q}(\zeta)$, the *n*-th cyclotomic field.

 $K_n^+ = \mathbb{Q}(\psi_n)$ with $\psi_n = \zeta_n + \zeta_n^{-1} = 2\cos\left(\frac{2\pi}{n}\right)$ $\mathcal{O}_{K_n^+} = \mathbb{Z}(\psi_n)$, i.e. K_n^+ is monogenic (and Galois). Denote $\Phi_n^+(x)$ the minimal polynomial of ψ_n Question: Is RLWE equivalent to PLWE for K_n^+ ? Absence of noice: Gaussian elimination sends PLWE-samples to RLWE-samples in $\mathcal{O}(m^3)$ -time via the transformation matrix.

 $V_{K_n^+}$ exponentially amplifies the noise (real nodes, hence exponential condition number, Gautschi).

Assume n = 4p, p prime.

Definition

Tchebychev polynomials

a)
$$T_n(x) = \cos(n \arccos(x)).$$

b)
$$T_0(x) = 1$$
, $T_1(x) = x$ and $T_n(x) = 2xT_{n-1}(x) - T_{n-2}(x)$
for $n \ge 2$.

Proposition (Kuian, 2005)

Let $x_k^{(N)} = \cos\left(\frac{2k-1}{2N}\pi\right)$. Denote $V_N = \left(T_i(x_k^{(N)})_{i,k-1=0}^N\right)$. Then, $\operatorname{Cond}(V_N)$ is polynomial in N.

Write
$$T_i(x_k^{(p)}) = Q_i(2x_k^{(p)})$$
,

Lemma

For $n \ge 1$, we can write $Q_n(x) = \frac{1}{2}a_n(x)$, where $a_n(x) \in \mathbb{Z}[x]$.

Denote:
$$Q_{4p} := \left(a_i(2x_k^{(p)})\right)_{i,k-1=0}^{p-1}$$
.
 $\operatorname{Cond}(Q_{4p}) \le p(p+1).$ (0.1)

Restrict the nodes only to those with 2k + 1 coprime with p. $T_i(x_{\frac{p-1}{2}}^{(p)}) = \cos\left(\frac{i\pi}{2}\right) \in \{0, \pm 1\}$ for $0 \le i \le p - 1$

Still denote by Q_{4p} the result of permuting the first and $\frac{p-1}{2}$ -th rows.

Eliminate first row, obtain $M_{4p} = Q_{4p}R$:

$$M_{4
ho}=\left(egin{array}{cc} 1 & O\ {f a} & N_{4
ho} \end{array}
ight)$$

Theorem (B. 2020) $Cond(N_{4p}) = O(p^4)$ and the map $\mathbb{Z}[x]/\Phi_{2p}^+(x) \rightarrow \sigma_1((\mathcal{O}_{K_{2p}^+}) \times ... \sigma_{p-1}((\mathcal{O}_{K_{2p}^+})$ $\mathbf{u} \mapsto N_{4p}\mathbf{u}$

is a lattice (and ring) isomorphism inducing a polynomial noise increase between the RLWE and the PLWE distributions.

RLWE/PLWE equivalence: the maximal totally real cyclotomic subextension Recently, we have proved:

Theorem (B.-López-Hernanz 2021)

For $r \ge 2$, p and q primes (or 1), then $Cond(N_{2^rpq}) = O((2^rpq)^4)$ and the map

$$\begin{split} \Psi: \mathbb{Z}[x]/\Phi_{2p}^+(x) &\to \sigma_1((\mathcal{O}_{\mathcal{K}_{2^rpq}^+}) \times ...\sigma_{2^{r-2}(p-1)(q-1)}((\mathcal{O}_{\mathcal{K}_{2^rpq}^+}) \\ \mathbf{u} &\mapsto N_{4p}\mathbf{u} \end{split}$$

is a lattice (and ring) monomorphism. The image is a sublattice of (explicit) finite index λ and the map

 $x\mapsto \Psi(\lambda x)$

has also condition number $O((2^r pq)^4)$. Consequently, R/P-LWE are equivalent.

Why K_n^+ ?: cryptoanalysis

Theorem (Elias, Lauter et al., 2016)

If K satisfies the following six conditions, there is a polynomial time attack to the search version of the associated RLWE scheme:

1.
$$K = \mathbb{Q}(\beta)$$
 is Galois of degree n.

- 2. The ideal (q) splits totally in $\mathcal{O}_{\mathcal{K}}$.
- 3. *K* is monogenic, i.e, $\mathcal{O}_K = \mathbb{Z}[\beta]$.
- 4. $Cond(V_f) = O(n^r)$, r fixed, f minimal poly of β .
- 5. $f(1) \equiv 0 \pmod{q}$.
- 6. The prime q can be chosen suitably large.

Can relax $f(1) = 0 \pmod{q}$ to $f(\theta) = 0$ with θ of small order or of small residue mod q.

Why K_n^+ ?: cryptoanalysis

 $\alpha = \pm 1$ is never a cyclotomic root of Φ_n if (n, q) = 1.

Example (Durán, 2021)

For $\Phi_{61}(x)$, $\alpha = 2$ is a root modulo q = 2305843009213693951 and for $\sigma = 0.4$, Lauter's attack holds. Same with $\Phi_{85}(x)$, $\alpha = 2$, q = 9520972806333758431 and $\sigma = 0.1$.

$$\begin{array}{l} \mathsf{Fact:} \ \Phi_n(x) := \Phi_n^+(x+x^{-1})x^{\frac{\phi(n)}{2}}.\\ \mathsf{Fact:} \ \Phi_{2^rk}^+(x) = \frac{\Phi_k^+(u_{2^r}(x))}{\Phi_k^+(u_{2^{r-1}}(x))}, u_n(x) := 2t_n\,(x/2). \end{array}$$

Proposition (B., López-Hernanz, 2021)

For $r \ge 2$ and $k \ge 3$ odd, we have, mod q:

$$\Phi^+_{2'}(1) = \pm 1; \quad \Phi^+_{2'}(2) = 2; \quad \Phi^+_{2'k}(1) = \Phi^+_{2'k}(2) = 1.$$

GRAZIE PER L'ATTENZIONE!!