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Introduction RLWE & PLWE Previous Results New Results Sketch of the Proofs Conclusions

Post-Quantum Cryptography (1/2)

The first and most widely used Public Key Cryptosystem is RSA, which was
invented by Rivest, Shamir, and Adleman in 1977.
(An equivalent cryptosystem was developed in secret by Clifford Cocks in
1973 for the British signals intelligence agency and declassified in 1997.)

The security of RSA is based on difficulty of the Factorization Problem,
in particular, the problem of finding two prime numbers p and q given
their product n = pq.

No efficient (classical) algorithm to factorize large integers n is known.

However, in 1994 Peter Shor invented a quantum algorithm, now known as
Shor’s algorithm, that can efficiently factorize n via a quantum computer.
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Post-Quantum Cryptography (2/2)

Due to the recent progress and the large investments into the development
of quantum computing, the actual implementation of Shor’s algorithm
seems more imminent than ever and constitutes a real threat to RSA.

Consequently, a lot of effort is put into Post-Quantum Cryptography,
that is, asymmetric cryptography designed to be resistant even against
attacks using quantum computers.

Candidates for Post-Quantum Cryptography includes:

Multivariate Cryptography

Code-based Cryptography

Hash-based Cryptography

Lattice-based Cryptography

Supersingular Elliptic Curve Isogeny Cryptography
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Lattice-Based Cryptography (1/2)

Lattice-Based Cryptography relies its security on the difficulty of problems
related to lattices, that is, subsets of Rn of the form {∑k

i=1 xivi : xi ∈ Z}
where v1, . . . , vk ∈ Rn.

It began in 1996 with the seminal work of Ajtai, who gave the first
collision-resistant hash function on random lattices.

Since then, numerous lattice-based encryption and digital signature
schemes have been proposed.

In particular, lattice-based proposals are the most numerous in the final
phase of the NIST post-quantum standardization process, with finalist in
both key encapsulation (CRYSTALS-Kyber, NTRU, SABER) and digital
signature schemes (CRYSTALS-Dilithium, FALCON).
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Lattice-Based Cryptography (2/2)

The main building block of lattice-based cryptographic schemes is the
Learning With Errors (LWE) problem, which, roughly speaking, consists of
retrieving a secret vector from a noisy random sample of matrix products.

Learning With Errors (LWE) Problem

Let n,m, q ∈ N and D be a probability distribution over Zq := Z/qZ.

Given m samples (ai , ai · s + ei ) where ai ∈ Zn
q are uniformly distributed

random vectors, ei ∈ Zq are D-distributed random errors (i = 1, . . . ,m),
and s ∈ Zn

q is a secret vector; Find the secret vector s.

LWE-based schemes have solid theoretical security bases but require the
ciphertext or the public key to be nearly quadratic respect to the security
parameters. To overcome this, variants of LWE working over Zq[X ]/(f ),
f ∈ Zq[X ], instead of Zn

q have been introduced.
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RLWE & PLWE

In 2009, Stehlé et al. introduced the Polynomial-LWE (PLWE) variant
using power-of-two degree cyclotomic polynomials.

In 2010, Lyubashevsky et al. introduced the Ring-LWE (RLWE) variant
over the ring of integers of a number field.

The advantage of RLWE is the provable-security by hard computational
problems, as for LWE.

PLWE is preferable in implementations, where the modular arithmetic
between polynomials can be efficiently implemented.

Therefore, it is interesting to study for which families of polynomials f the
RLWE and PLWE problems are equivalent, that is, every solution of RLWE
can be turned in polynomial time into a solution of PLWE, and vice versa,
incurring in a noise increase that is polynomial in deg(f ).
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Short Elements

Let K = Q(α) be a monogenic number field of degree m, and let f ∈ Z[X ]
be the minimal polynomial of α over Q, so that K ∼= Z[X ]/(f ).

The geometric notion of short element derives from a choice of a norm
on K by embedding the number field in Cm.

RLWE uses the canonical embedding (or Minkowski embedding)
σ : K → Cm, where σi (i = 1, . . . ,m) are all the embeddings of K in C.

PLWE uses the coefficient embedding, which maps each x ∈ OK to the
vector (x0, · · · , xm−1) ∈ Z of its coefficients respect to the power basis
1, α, . . . , αm−1 of OK as a Z-module.

As a linear map, the canonical embedding has a matrix representation
Vf ∈ Cm×m, so that σ(x) = Vf · (x0, . . . , xm−1)ᵀ for each x ∈ OK .
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Vandermonde Matrix

Precisely, Vf is the Vandermonde matrix of f , which is defined as

Vf :=



1 α0 α2
0 · · · αm−1

0

1 α1 α2
1 · · · αm−1

1

1 α2 α2
2 · · · αm−1

2

...
...

...
. . .

...

1 αm−1 α2
m−1 · · · αm−1

m−1


,

where α0, . . . , αm are the roots of f (which are distinct, since f is irreduc.).

We have that
det(Vf ) =

∏
0≤ i < j <m

(αi − αj) 6= 0.

Hence, Vf is invertible.
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Equivalence Between RLWE and PLWE

Let ‖ · ‖ be any fixed norm on Cm (since all such norms are equivalent).

For the equivalence between RLWE and PLWE, it is important to
determine when, whether ‖x‖ is small, then so is ‖σ(x)‖, and vice versa.

This notion is quantified by Vf having a small condition number Cond(Vf ).

The condition number of an invertible matrix A ∈ Cm×m is defined as

Cond(A) := ‖A‖ ‖A−1‖

where ‖A‖ :=
√

Tr(A∗ A) =
√∑

i , j |ai , j |2 denotes the Frobenius norm of

A and A∗ is the conjugate transpose of A.

RLWE and PLWE are equivalent over a family of polynomials F if

Cond(Vf ) ≤ CF (deg(f ))EF , for all f ∈ F ,
where CF ,EF > 0 are constants depending only on the family F .
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Some Results on the Equivalence

Equivalence of RLWE and PLWE has been proved for various families of
polynomials. The greatest interest concerns cyclotomic polynomials,
which, for efficiency reasons, are among the most used in cryptographic
applications.

Miruna Rosca, Damien Stehlé, and Alexandre Wallet,
On the Ring-LWE and Polynomial-LWE Problems,
EUROCRYPT 2018-37th Annual International Conference on the Theory and
Applications.

Damien Stehlé, R. Steinfeld, K. Tanaka, and K. Xagawa,
Efficient public key encryption based on ideal lattices,
International Conference on the Theory and Application of Cryptology and
Information Security, Springer, 2009, pp. 617–635.
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Cyclotomic Polynomials

Let us recall that the nth cyclotomic polynomial is defined as

Φn(X ) :=
∏

1≤ k ≤ n

gcd(n, k) = 1

(
X − e2πik/n

)
,

that is, Φn(X ) is the monic polynomial having as roots the primitive nth
roots of unity.

It can be proved that Φn has integer coefficients and is irreducible over Q.
In fact, Φn is the minimal polynomial of each primitive nth root of unity.

In what follows, let m := ϕ(n) be the degree of Φn, where ϕ is the Euler
totient function, and let ζ0, . . . , ζm−1 be the primitive nth roots of unity
(in some fixed order), where, to ease the notation, the dependency on n is
omitted.
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Vandermonde Matrices of Cyclotomic Polynomials

Thus the Vandermonde matrix of Φn is

Vn := VΦn =



1 ζ0 ζ2
0 · · · ζm−1

0

1 ζ1 ζ2
1 · · · ζm−1

1

1 ζ2 ζ2
2 · · · ζm−1

2

...
...

...
. . .

...

1 ζm−1 ζ2
m−1 · · · ζm−1

m−1


.

The main difficulty in the study of Vn is that the sequence of powers

1, ζj , ζ2
j , ζ3

j , . . .

is periodic with period length n, but Vn has only m columns and m < n.

Note that ‖Vn‖ = m, since |ζj | = 1. Therefore, computing the condition
number Cond(Vn) := ‖Vn‖ ‖V−1

n ‖ amount to computing ‖V−1
n ‖.
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The Power-of-Two Case

The case of n a power of 2 is well known and completely understood.

Proposition

For n = 2k the matrix Vn is a scaled isometry: VnV
∗
n = m Idn, where Idn is

the n × n identity matrix. Furthermore, Cond(Vn) = m.

Proof : Since n = 2k , we have that m = 2k−1 and ζmi = −1 for each i .
Hence, the product of the ith row of Vn and the jth column of V ∗n is equal
to m if i = j , and it is equal to

m−1∑
k = 0

(
ζiζj
)k

=

(
ζiζj
)m − 1

ζiζj − 1
= 0

if i 6= j ; so that VnV
∗
n = m Idn and consequently Cond(Vn) = m. �

Corollary

RLWE and PLWE over the polynomial family (Φ2k )k≥1 are equivalent.
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Some Upper Bounds on Cond(Vn) (1/2)

Iván Blanco-Chacón,
On the RLWE/PLWE equivalence for cyclotomic number fields,
Applicable Algebra in Engineering, Communication and Computing (2020).

Theorem (Blanco-Chacón, 2020)

Let n = p1 · · · pk , where p1 < · · · < pk are prime numbers. Then

Cond(Vn) ≤ 2p1 · · · pkn2k+2k−1+k+2.

Corollary

For every fixed k ≥ 1, RLWE and PLWE over the polynomial family
(Φp1···pk )p1 < ···< pk are equivalent.
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Some Upper Bounds on Cond(Vn) (2/2)

For small k, Blanco-Chacón provided sharper upper bounds:

Theorem (Blanco-Chacón, 2020)

Let p1 < p2 < p3 be prime numbers and let e1, e2, e3 ≥ 1 be integers.

For n = pe1
1 we have that

Cond(Vn) ≤ 4ϕ(p1)m,

for n = pe1
1 pe2

2 we have that

Cond(Vn) ≤ 2ϕ(p1p2)m2,

and for n = pe1
1 pe2

2 pe3
3 we have that

Cond(Vn) ≤ 2
(
ϕ(p1p2p3)

)2
m2.
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Reduction to Squarefree Numbers

Antonio J. Di Scala, C. S., and Edoardo Signorini,
On the condition number of the Vandermonde matrix of the nth
cyclotomic polynomial, Journal of Mathematical Cryptology (2020).

Theorem (Di Scala, S., Signorini, 2020)

For every positive integer n, we have

Cond(Vn) =
n

rad(n)
Cond(Vrad(n)),

where rad(n) is the product of the prime factors of n.

Hence, in the study of Cond(Vn), it suffices to consider only squarefree n,
that is, numbers of the form n = p1 · · · pk , where p1 < · · · < pk are primes.
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Exact Formula for Cond(Vn) when n = pk and n = 2kph

Theorem (Di Scala, S., Signorini, 2020)

For n = pk , with k ≥ 1 and p a prime number, and for n = 2kph, with
k , h ≥ 1 and p an odd prime number, we have that

Cond(Vn) =
√

2 (1− 1/p)m.

Note that this exact formula improves the previous upper bound for n = pk

Cond(Vn) ≤ 4(p − 1)m,

given by Blanco-Chacón.
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Non-Equivalence of RLWE and PLWE over (Φn)

Antonio J. Di Scala, C. S., and Edoardo Signorini,
RLWE and PLWE over cyclotomic fields are not equivalent,
Applicable Algebra in Engineering, Communication and Computing
(accepted) arXiv: https://arxiv.org/abs/2201.04365.

Theorem (Di Scala, S., Signorini, 2020)

There exist infinitely many positive integers n such that

Cond(Vn) > exp
(
n log 2 / log log n

)
/
√
n.

In particular, for every E > 0, we have that Cond(Vn) 6= O
(
nE
)
.

Corollary

RLWE and PLWE over cyclotomic fields are not equivalent.
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A plot of Cond(Vn) with n squarefree, 1 < n < 10000. The data is
partitioned according to the number ω(n) of prime factors of n.

(Edoardo Signorini: https://github.com/edoars/cyclovandermonde)
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Ramanujan’s Sums

The Ramanujan’s sum modulo n is the arithmetic function cn defined by

cn(t) :=
m−1∑
j = 0

ζtj , for all t ∈ Z.

(Recall that ζ0, . . . , ζm−1 are the primitive nth roots of unity.)

Ramanujan’s sums appear frequently and are important objects in both
Analytic and Algebraic Number Theory.

It is easy to check that cn is an even periodic function with period length n.
Furthermore, it holds the von Sterneck formula

cn(t) = µ

(
n

(n, t)

)
ϕ(t)

ϕ

(
n

(n, t)

)
where µ is the Möbius function and (n, t) denotes the greatest common
divisor. In particular, cn(t) is an integer.
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Gram Matrix of Vn

Let Gn := V ∗n Vn be the Gram matrix of Vn. Then we have

Gn =


cn(0) cn(1) · · · cn(m − 1)
cn(1) cn(0) · · · cn(m − 2)

...
...

. . .
...

cn(m − 1) cn(m − 2) · · · cn(0)

 =
(
cn(i − j)

)
0≤ i , j <m

.

In particular, Gn is a symmetric Toeplitz matrix with integer entries.

Let λ1, . . . , λm be the eigenvalues of Gn, which are real and positive, since
Gn is the Gram matrix of an invertible matrix. Then

Cond(Vn) = ‖Vn‖‖V−1
n ‖ = m

√
Tr(G−1

n ) = m

√√√√ m∑
i = 1

1

λi
.

Hence, studying Cond(Vn) is equivalent to studying the eigenvalues of Gn.
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Reduction to Squarefree Numbers

The characteristic polynomials of Gn and Grad(n) are related by:

Lemma

For every positive integer n, we have

det(Gn − x Idm) = hm det
(
Gn′ −

x

h
Idm′

)h
where n′ := rad(n), m′ := ϕ(n′), and h := n/n′.

Proof (Sketch): von Sterneck formula yields that Gn = h Gn′ ⊗ Idh. Then
one uses det(A⊗ B) = det(A)s det(B)t , for A ∈ Ct×t and B ∈ Cs×s . �

Thus the eigenvalues of Gn are the eigenvalues of Grad(n) multiplied by h
both in values and multiplicities. Hence, from the previous considerations,
it follows that

Cond(Vn) =
n

rad(n)
Cond(Vrad(n)).
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The Cases n = pk and n = 2kph

Further work with von Sterneck formula shows that G2n and Gn have the
same eigenvalues, for every odd positive integer n.

Therefore, the computation of the condition number Cond(Vn) for n = pk

and n = 2kph is reduced to the computation of Cond(Vp).

Since

Gp =


p − 1 −1 −1 · · · −1
−1 p − 1 −1 · · · −1
−1 −1 p − 1 · · · −1

...
...

...
. . .

...
−1 −1 −1 · · · p − 1


a bit of computation shows that the eigenvalues of Gp are p and 1, with
respective multiplicities p − 2 and 1.

From this, one gets the formulas for Cond(Vph) and Cond(V2kph).
21 / 29
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The Proof of the Lower Bound for Cond(Vn)

The main difficulty in proving a lower bound for Cond(Vn) is that the
entries of V−1

n are sums of roots of unity, and in such sums a lot of
“cancellation” can happen. Hence, such sums can be very small, despite
having a lot of addends, which makes them difficult to bound from below.

This is strictly related to the fact that the coefficients of the cyclotomic
polynomials are usually small, despite being sums of many roots of unity.
For instance, expanding the product

Φ105(X ) :=
∏

1≤ k ≤ 105

gcd(105, k) = 1

(
X − e2πik/105

)
,

one gets that the coefficient of X 7 in Φ105(X ) is the sum of(
48

7

)
= 73, 629, 072

roots of unity. Despite that, such coefficient is equal to −2.
(This example is due to D. H. Lehmer (1966).) 22 / 29



Introduction RLWE & PLWE Previous Results New Results Sketch of the Proofs Conclusions

Continuing Vn

Let

Wn :=


1 ζ0 ζ2

0 · · · ζmn−1
0

1 ζ1 ζ2
1 · · · ζmn−1

1

1 ζ2 ζ2
2 · · · ζmn−1

2
...

...
...

. . .
...

1 ζm−1 ζ2
m−1 · · · ζmn−1

m−1


be the m ×mn matrix obtained by “continuing” Vn to the right.

Lemma

We have Wn W
∗
n = mn Idm.

Proof : The product of the ith row of Wn and the jth column of W ∗
n is

mn−1∑
k = 0

(
ζiζj
)k

=

{
mn if i = j ;

0 if i 6= j .

(This is the orthogonality of roots of unity.) �.
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Coefficients of Φn

Let an(j) denote the coefficient of X j in Φn(X ), that is,

Φn(X ) =
m∑

j = 0

an(j)X j .

The study of the coefficients of the cyclotomic polynomials has a very long
history, which goes back at least to Gauss.

Let A(n) be the maximum of the absolute values of an(0), . . . , an(m − 1).

Theorem (Vaughan, 1974)

We have A(n) > exp
(
n log 2 / log log n

)
for infinitely many positive integers n.

Robert C. Vaughan, Bounds for the coefficients of cyclotomic
polynomials, Michigan Mathematical Journal (1974).

C. S., A survey on coefficients of cyclotomic polynomials,
Expositiones Mathematicae (accepted) https://arxiv.org/abs/2111.04034.

24 / 29
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A plot of the coefficients of Φn(X ) for n = 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29.
The ϕ(n) + 1 = 1, 021, 870, 081 coefficients were computed using the
program SPS4 64 of Arnold and Monagan. Then the plot was produced by
selecting a random sample of 500, 000 coefficients.



Introduction RLWE & PLWE Previous Results New Results Sketch of the Proofs Conclusions

Companion Matrix of Φn

Let Cn be the companion matrix of Φn, which is the m ×m matrix

Cn :=


0 0 · · · 0 −an(0)
1 0 · · · 0 −an(1)
0 1 · · · 0 −an(2)
...

...
. . .

...
...

0 0 · · · 1 −an(m − 1)

 ,

and let
Sn :=

(
Idm | Cm

n | C 2m
n | · · · | C (n−1)m

n

)
be the m ×mn matrix given by juxtapositioning the first n powers of Cm

n .

Lemma

We have V−1
n Wn = Sn.

25 / 29
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A Formula for ‖V−1
n ‖

Lemma

We have ‖V−1
n ‖2 = 1

mn

∑n−1
k=0 ‖C km

n ‖2.

Proof: From Wn W
∗
n = mn Idm and V−1

n Wn = Sn, it follows that

mn‖V−1
n ‖2 = mnTr

(
V−1
n

(
V−1
n

)∗)
= Tr

(
V−1
n WnW

∗
n

(
V−1
n

)∗)
= Tr(SnS

∗
n ).

Then, by the definition of Sn, we have that

Tr(SnS
∗
n ) = Tr

((
Idm | Cm

n | · · · | C (n−1)m
n

)


Idm

(Cm
n )∗

...(
C

(n−1)m
n

)∗


)

=
n−1∑
k = 0

Tr
(
C km
n

(
C km
n

)∗)
=

n−1∑
k = 0

‖C km
n ‖2. �
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Powers of the Companion Matrix Cn

Lemma

Let k be a positive integer and let

C :=


0 0 · · · 0 c0

1 0 · · · 0 c1

0 1 · · · 0 c2
...

...
. . .

...
...

0 0 · · · 1 ck−1

 ∈ Ck×k .

Then, for every integer j ∈ [1, k], the (k − j)th column of C j is equal to(
c0 c1 · · · ck−1

)ᵀ
. (Note: The first column if the 0th.)

Proof: Actually, a stronger claim holds: For every integer j ∈ [1, k], the
0th, 1th, . . . , (k − j)th columns of C j are equal to the (j − 1)th, jth, . . . ,
(k − 1)th columns of C , respectively. This follows easily by induction on j .
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The Lower Bound for Cond(Vn)

Putting all together, we get that

‖V−1
n ‖2 = 1

mn

n−1∑
k=0

‖C km
n ‖2 ≥ 1

mn‖Cm
n ‖2 ≥ 1

mn

m−1∑
j = 0

|an(j)|2 ≥ 1
mnA(n)2.

where in the second inequality we used the previous lemma (since m < n).
In turn, this implies that

Cond(Vn) = ‖Vn‖ ‖V−1
n ‖ = m ‖V−1

n ‖ ≥
√

m
n A(n) ≥ 1√

n
A(n).

As a consequence, Vaughan’s lower bound for A(n) yields that

Cond(Vn) > exp
(
n log 2/ log log n

)
/
√
n,

for infinitely many positive integers n.
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Conclusions

We settled the question of the equivalence between RLWE and PLWE over
cyclotomic fields by answering it negatively.

Therefore, from both a practical and a theoretical point of view, future
investigations have to keep in mind that, in general, over cyclotomic fields,
results on RLWE cannot be translated into results on PLWE, and vice versa,
unless further restrictions on the polynomials Φn(X ) are imposed.

Some natural questions for future research are the following:

Question 1

Is there an “explicit formula” for Cond(Vpq), with p < q prime numbers?

Question 2

What is the maximal order of Cond(Vn) as n→ +∞ ?
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