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Introduction



Linear Recurrences

A sequence of integers u = (un)n≥0 is a linear recurrence of order k if
there exist a1, . . . , ak ∈ Z, with ak ̸= 0, such that

un = a1un−1 + a2un−2 + · · ·+ akun−k , (1)

for all integers n ≥ k , and no similar relation holds for a smaller value of k.

In such a case, the polynomial

fu(X ) = X k − a1X
k−1 − a2X

k−2 − · · · − ak

is the characteristic polynomial of u, while the terms

u0, u1, u2, . . . , uk−1

are the initial conditions of u.

Together, they completely determine u via (1).
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Examples of Linear Recurrences

Geometric progressions

q, qr , qr2, qr3, qr4, . . .

are linear recurrences of order 1 and characteristic polynomial X − r .

Sequences of the form (an − 1)n≥0, for fixed a ∈ Z.

The sequence of Fibonacci numbers (Fn)n≥0

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

is a linear recurrence of order 2 and char. polynomial X 2 − X − 1.

Lucas sequences, which are a generalization of Fibonacci numbers
(more details later).

Every polynomial sequence (p(n))n≥0, with p(X ) ∈ Z[X ], is a linear
recurrence of order k := deg(p) + 1 and char. polynomial (X − 1)k .
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G.C.D.s of Terms of Linear Recurrences (1/3)

Many authors have studied the G.C.D.s of terms of two linear recurrences.

A first important result is the following.

Theorem (Bugeaud, Corvaja, and Zannier 2003)

Let a, b > 1 be multiplicatively independent integers and fix ε > 0. Then

gcd(an − 1, bn − 1) < exp(εn),

for all sufficiently large n.

Bugeaud, Corvaja, and Zannier, An upper bound for the G.C.D. of
an − 1 and bn − 1, Mathematische Zeitschrift 243 (2003), 79–84.
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G.C.D.s of Terms of Linear Recurrences (2/3)

Of which many generalization/variations have been given. For instance:

Theorem (Fuchs 2003)

Let (un)n≥0 and (vn)n≥0 be linear recurrences whose characteristic
polynomials have only positive real roots and such that (un/vn)n≥0 is not
a linear recurrence. Then there exists an explicit constant C ∈ (0, 1) such
that

gcd(un, vn) < min(un, vn)
C ,

for all sufficiently large n.

Fuchs, An upper bound for the G.C.D. of two linear recurring
sequences, Mathematica Slovaca 53 (2003), 21–42.
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G.C.D.s of Terms of Linear Recurrences (2/3)

An extensive survey has been given by Tron.

Tron, The greatest common divisor of linear recurrences, Rendiconti
Seminario Matematico dell’Università e del Politecnico di Torino 78.1
(2020), 103–124.

In general, pointwise results are difficult to prove. In fact, the following
conjecture is still open.

Conjecture (Ailon–Rudnick 2004)

If a and b are multiplicatively independent integers, then there exist
infinitely many positive integers n such that

gcd(an − 1, bn − 1) = gcd(a− 1, b − 1).

Ailon and Rudnick, Torsion points on curves and common divisors of
ak − 1 and bk − 1, Acta Arithmetica 113 (2004), 31–38.
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The G.C.D. of n and Fn:
Fibers



The Fiber Ak

For each positive integer k , define the fiber

Ak :=
{
n ≥ 1 : gcd(n,Fn) = k

}
.

Recall that the natural density of a set of positive integers S is defined as

d(S) := lim
x→+∞

#S(x)
x

,

whenever this limit exists, and where S(x) := S ∩ [1, x ] for all x ≥ 0.

For each positive integer n let z(n) denote the rank of appearance of n,
that is, the smallest positive integer k such that n divides Fk .
(It can be proved that z(n) exists.) Moreover, put ℓ(n) := lcm(n, z(n)).

The function ℓ has the property that m | gcd(n,Fn) if and only if ℓ(m) | n.
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The Density of Ak

Theorem (S. and Tron 2018)

For each positive integer k, the natural density of Ak exists and we have

d(Ak) =
∞∑
d=1

µ(d)

ℓ(dk)
,

where µ is the Möbius function and the series converges absolutely.

Also, d(Ak) > 0 if and only if Ak ̸= ∅ if and only if k = gcd(ℓ(k),Fℓ(k)).

S. and Tron, The density of numbers n having a prescribed G.C.D.
with the nth Fibonacci number, Indagationes Mathematicae 29
(2018), 972–980.

Let us see a sketch of the proof...
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Sketch of the Proof: From Ak to Bk (1/2)

For each integer k ≥ 1, let Bk be the set of positive integers n such that:

(i) k divides gcd(n,Fn);

(ii) if a prime number p divides gcd(n,Fn), then p divides k .

By a standard application of the inclusion-exclusion principle, we have

#Ak(x) =
∑
d | k

µ(d)#Bdk(x) for x ≥ 0. (2)

At this point, it suffices to prove the following lemma.

Lemma

For each positive integer k, we have

d(Bk) =
∑

gcd(d ,k)= 1

µ(d)

ℓ(dk)
,

where the series converges absolutely.
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Sketch of the Proof: From Ak to Bk (2/2)

Indeed, using (2) and the previous lemma, we get

d(Ak) =
∑
d | k

µ(d)d(Bdk) =
∑
d | k

µ(d)
∑

gcd(e,dk)= 1

µ(e)

ℓ(dek)

=
∑
d | k

∑
gcd(e,dk)= 1

µ(de)

ℓ(dek)
=

∞∑
f =1

µ(f )

ℓ(fk)
,

since every squarefree positive integer f can be written in a unique way as
f = de, where d and e are are squarefree positive integers such that d | k
and gcd(e, k) = 1.

(The rearrangement of the series is justified by absolute convergence.)

Let us see how to prove the previous lemma...
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Sketch of the Proof: A Counting Argument

For all positive integers n and d , define

τ(n, d) =

{
1 if d | Fn,
0 if d ∤ Fn.

Clearly, τ(n, de) = τ(n, d) τ(n, e), for all relatively prime d and e.

Moreover, n ∈ Bk if and only if: (i) ℓ(k) | n and (ii) τ(n, p) = 0 for all
prime numbers p dividing n but not dividing k . Therefore,

#Bk(x) =
∑
n≤ x
ℓ(k) | n

∏
p | n
p ∤ k

(1− τ(n, p)) =
∑
n≤ x
ℓ(k) | n

∑
d | n

gcd(d ,k)= 1

µ(d) τ(n, d)

=
∑
d ≤ x

gcd(d ,k)= 1

µ(d)
∑

m≤ x/d
ℓ(k) | dm

τ(dm, d) =
∑
d ≤ x

gcd(d ,k)= 1

µ(d)

⌊
x

ℓ(dk)

⌋
,

where the last equality follows from the fact that τ(dm, d) = 1 and that
ℓ(k) | dm if and only if ℓ(dk)/d divides m.
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Sketch of the Proof: The Error Term (1/2)

As a consequence,

#Bk(x) = x
∑
d ≤ x

gcd(d ,k)= 1

µ(d)

ℓ(dk)
− R(x),

where

R(x) :=
∑
d ≤ x

gcd(d ,k)= 1

µ(d)

{
x

ℓ(dk)

}
.

Hence, in order to have

d(Bk) =
∑

gcd(d ,k)= 1

µ(d)

ℓ(dk)
,

we need to prove that R(x) = o(x), as x → +∞.
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Sketch of the Proof: The Error Term (2/2)

Actually, it suffices to prove that the series

∞∑
d =1

µ(d)

ℓ(dk)

converges absolutely.

Indeed, in such a case we have

|R(x)| ≤
∑
d ≤ x

|µ(d)|
{

x

ℓ(dk)

}
≤ x1/2 +

∑
d > x1/2

|µ(d)|
{

x

ℓ(dk)

}

≤ x1/2 + x
∑

d > x1/2

|µ(d)|
ℓ(dk)

= o(x), as x → +∞.

The convergence of the series is proved using properties of ℓ and some
elementary bounds of Analytic Number Theory (we omit the details).
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Sketch of the Proof: Positivity (1/2)

It remains to prove that d(Ak) > 0 if and only if Ak ̸= ∅ if and only if
k = gcd(ℓ(k),Fℓ(k)).

The last equivalence is relatively easy, while proving the first equivalence is
the difficult part.

In particular, working directly with the formula

d(Ak) =
∞∑
d=1

µ(d)

ℓ(dk)
,

seems hopeless.
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Sketch of the Proof: Positivity (2/2)

For any set of positive integers S, let N (S) :=
{
n ≥ 1 : s ∤ n, ∀s ∈ S

}
.

Lemma

Let S be a set of positive integers such that∑
s∈S

1

s
< +∞

and N (S) has a natural density. Then, d(N (S)) > 0 if and only if 1 /∈ S.

Lemma

For each positive integer k such that Ak ̸= ∅, we have

Ak =
{
ℓ(k)m : m ∈ N (Lk)

}
,

where Lk :=
{
p : p | k

}
∪
{
ℓ(kp)/ℓ(k) : p ∤ k

}
.

Since it can be proved that
∑

s∈Lk
1/s < +∞ and that 1 /∈ Lk , we get

that d(Ak) > 0 if and only if Ak ̸= ∅, as claimed.
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Generalization to Lucas Sequences (1/2)

A Lucas sequence is a linear recurrence u = (un)n≥0 satisfying

u0 = 0, u1 = 1, and un = a1un−1 + a2un−2 for all n ≥ 2,

where a1 and a2 are fixed nonzero relatively prime integers.

A Lucas sequence is nondegenerate if the ratio of the roots of the
characteristic polynomial fu(X ) = X 2 − a1X − a2 is not a root of unity.

For each positive integer k , define the fiber

Au,k := {n ≥ 1 : gcd(n, un) = k}.

For each positive integer n with gcd(n, a2) = 1, let zu(n) be the rank of
appearance of n in u, i.e., the smallest positive integer k such that n
divides uk . (It can be proved that zu(n) exists.)
Moreover, put ℓu(n) := lcm(n, zu(n)).
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Generalization to Lucas Sequences (2/2)

The proof of the previous theorem can be easily generalize to obtain:

Theorem (S. and Tron, 2018)

For each positive integer k, the natural density of Au,k exists and we have

d(Au,k) =
∑

gcd(d ,a2)=1

µ(d)

ℓu(dk)
,

where the series converges absolutely.

Also, Au,k ̸= ∅ if and only if gcd(k , a2) = 1 and k = gcd(ℓu(k), uℓu(k)).
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Further Remarks

An analog result for elliptic divisibility sequences was proved by Kim.

Kim, The density of the terms in an elliptic divisibility sequence having
a fixed G.C.D. with their indices, Journal of Number Theory 207
(2020), 22–41.

The existence of the density has a generalization to linear recurrences.

Theorem (Mastrostefano and S. 2019)

Let (un)n≥0 be a nondegenerate linear recurrence and let k be a positive
integer. Then the set

{n ≥ 1 : gcd(un, n) = k}

has a natural density, which is zero if and only if the set is empty.

Mastrostefano and S., On numbers n with polynomial image coprime
with the nth term of a linear recurrence, Bulletin of the Australian
Mathematical Society 99 (2019), 23–33.
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The G.C.D. of n and Fn:
Image



Integers of the Form gcd(n,Fn)

Let G be the set of all integers of the form gcd(n,Fn) for some integer
n ≥ 1.

For example, 10 ∈ G since 10 = gcd(30, 832040) = gcd(30,F30).

Equivalently, we have that G = {k ≥ 1 : Ak ̸= ∅}.

The first elements of G are

1, 2, 5, 7, 10, 12, 13, 17, 24, 25, 26, 29, 34, 35, 36, . . .

It is not immediately clear how to establish if n ∈ G.

An effective criterion is the following.

Lemma

n ∈ G if and only if n = gcd(ℓ(n),Fℓ(n)).
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How Big is G ?

Numerical experiments suggest that #G(x) ∼ x/(log x)c , as x → +∞, for
some constant c ≈ 0.63, but it is difficult to say.

Figure: Plot of #G(x)/(x/(log x)c) for x ∈ [102, 106].
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Upper and Lower Bounds

Theorem (Leonetti and S. 2018)

We have
#G(x) ≫ x

log x

for all x ≥ 2, while
#G(x) = o(x)

as x → +∞.

Leonetti and S., On the greatest common divisor of n and the nth
Fibonacci number, Rocky Mountain Journal of Mathematics 48
(2018), 1191–1199.
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Key Tool in the Proofs of Upper and Lower Bounds (1/2)

Recall that the relative density of a set of prime numbers P is defined as

r(P) := lim
x→+∞

#P(x)

x/log x
,

whenever this limit exists.

For each positive integer m, let

Zm := {p ∈ P : m | z(p)},

where P is the set of prime numbers.

22 / 34



Key Tool in the Proofs of Upper and Lower Bounds (2/2)

The key tool in the proofs of the bounds for #G(x) is the following result.

Theorem (Cubre and Rouse 2014)

For each integer m ≥ 1, the relative density of Zm exists and

r(Zm) =
r(m)

m

∏
qe ||m

(
1− 1

q2

)−1

,

where qe runs over the prime powers in the factorization of m, while

r(m) :=


1 if 10 ∤ m,

5/4 if m ≡ 10 mod 20,

1/2 if 20 | m.

Cubre and Rouse, Divisibility properties of the Fibonacci entry point,
Proceedings of the American Mathematical Society 142 (2014),
3771–3785.
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Sketch of the Proof of the Upper Bound (1/2)

Let us sketch the proof of the upper bound #G(x) = o(x).

We have the following lemma.

Lemma

If n ∈ G and ℓ(q) | ℓ(n) for some prime q, then q divides n.

Fix ε > 0 and pick a prime q such that 1/q < ε/2. Moreover, put

Q := Zℓ(q) = {p : ℓ(q) | z(p)}.

By Cubre and Rouse’s result, we have that Q has a positive relative
density in the set of all primes. As a consequence, we can pick a
sufficiently large y > 0 so that∏

p∈Q(y)

(
1− 1

p

)
<

ε

2
.
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Sketch of the Proof of the Upper Bound (2/2)

Now we split G into two subsets:

G1 := {n ∈ G : n has no prime factors in Q(y)}
G2 := G \ G1.

If n ∈ G2, then n has a prime factor p ∈ Q(y), so that ℓ(q) | z(p). Hence,
ℓ(q) | ℓ(n) and, by the previous lemma, q | n. Thus all the elements of G2

are multiples of q.

In conclusion,

lim sup
x→+∞

#G(x)
x

≤ lim sup
x→+∞

#G1(x)

x
+ lim sup

x→+∞

#G2(x)

x

≤
∏

p∈Q(y)

(
1− 1

p

)
+

1

q
<

ε

2
+

ε

2
= ε,

and, by the arbitraryness of ε, it follows that #G(x) = o(x). □
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An Improved Upper Bound

Recently, the upper bound has been improved as it follows.

Theorem (Jha and S. 2022)

We have

#G(x) ≪ x log log log x

log log x
,

for all sufficiently large x.

Jha and S., On the greatest common divisor of n and the nth
Fibonacci number, II, Canadian Mathematical Bulletin (in press).

In fact, the result has been proved more generally for nondegenerate Lucas
sequences.
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Divisibility of the Rank of Appearance

The improved upper bound was made possible by replacing the result of
Cubre and Rouse with the following more precise asymptotic formula.

Theorem (S. 2022)

Let u = (un)n≥0 be a Lucas sequence satisfying some mild hypotheses
[here omitted]. Then there exists a constant Bu > 0 such that, for all odd
integers m ≥ 1 and for all x ≥ exp(Bum

40), we have that

#{p ≤ x : m | zu(p)} = δu(m)
x

log x
+ O

(
x

(log x)12/11

)
,

where δu(m) > 0 is given explicitly [here omitted].

S., On the divisibility of the rank of appearance of a Lucas sequence,
International Journal of Number Theory 18 (2022), 2145–2156.
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Gaps of the Bounds

In light of the previous results we have that

x

log x
≪ #G(x) ≪ x log log log x

log log x
,

for all sufficiently large x .

Therefore, there is a large gap between the proved upper and lower bounds.

Open Problems

What is the true order of #G(x) ?

Is it #G(x) ∼ x/(log x)c for some c > 0 ?
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The G.C.D. of p − 1 and Fp−1:
Fibers



Shifted Primes and Fibonacci Numbers

One can consider similar results but for the set of shifted primes p − 1.

Shifted primes already make their appearance in relation to Fibonacci
numbers. For instance, it is well known that p divides Fp−1 for every prime
number p ≡ ±1 (mod 5).

For each integer k ≥ 1, define the following set of prime numbers

Pk :=
{
p : gcd(p − 1,Fp−1) = k

}
.
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Relative Density of Pk

Theorem (Jha and S. 2022)

For each positive integer k, the relative density of Pk exists and we have

r(Pk) =
∞∑
d=1

µ(d)

φ(ℓ(dk))
,

where φ is the Euler function and the series converges absolutely.

Moreover, if gcd(ℓ(k),Fℓ(k)) ̸= k, or if 2 ∤ ℓ(n) and ℓ(pk) = 2 ℓ(k) for some
prime p with p ∤ k, then Pk ⊆ {2}. Otherwise, we have that r(Pk) > 0.

Jha and S., Greatest common divisors of shifted primes and Fibonacci
numbers, Research in Number Theory 8 (2022), Paper No. 65.
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Some Remarks on the Proof

The proof of the formula for the relative density proceeds similarly to the
proof of the formula for d(Ak), but it requires results on prime numbers in
arithmetic progressions (Siegel–Walfisz and Brun–Titchmarsh theorems).

The proof of the claim on r(Pk) > 0 requires the following theorem.

Theorem (Leonetti and S. 2018)

Let m1, . . . ,mk be positive integers and let

Q :=
{
p ∈ P : p ̸≡ 1 (mod mi ) for i = 1, 2, . . . , k

}
.

Then Q has a relative density and

r(Q) ≥
k∏

i=1

(
1− 1

φ(mi )

)
.

Leonetti and S., A note on primes in certain residue classes,
International Journal of Number Theory 14 (2018), 2219–2223.
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The G.C.D. of p − 1 and Fp−1:
Image



Integers of the Form gcd(p − 1,Fp−1)

Let K be the set of all integers of the form gcd(p − 1,Fp−1) for some
prime number p > 2.

Equivalently, we have that K = {k ≥ 1 : r(Pk) > 0}.

Since K ⊆ G, from the upper bound on #G(x) it follows that

#K(x) ≪ x log log log x

log x
,

for all sufficiently large x .

We also have the following lower bound.

Theorem (Jha and S. 2022)

We have that
#K(x) ≫ x

log x
,

for all sufficiently large x.
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Further Remarks and Some Open Problems

The last theorem is proved by elementary methods only, especially not
involving Cubre and Rouse’s theorem or generalization thereof, which are
based on Chebotarev density theorem. Therefore, since K ⊆ G, the last
theorem yields an alternative proof of the lower bound for G.

Open Problem

What is the true order of #K(x) ?

Open Problem

What about gcd(p ± 1,Fp±1) for the other three choices of signs?

Open Problem

Extend the previous results to Lucas sequences.
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Thanks and References
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