
1

Politecnico di Torino, 11 Gennaio 2019

Introduction to
Post-Quantum Cryptography

Content

2

What is cryptography?
Classical vs Post Quantum Cryptography
Code-Based Cryptography
Lattice-Based Cryptography
Multivariate-Based Cryptography
Isogeny-Based Cryptography
Hash-Based Cryptography
Conclusions

33

What is cryptography?

4

Two types of cryptography

● Symmetric crypto:

• allows two parties to communicate secretly on a public channel,
only if they exchanged a secret on a private channel before

• Efficient both in hardware and software

• Usually more trusted

● Asymmetric crypto:

• allows two parties to communicate secretly on a public channel,
even if they never communicated before

• Significantly less efficient than symmetric crypto

• Based on mathematical problems that are hard to solve

● Symmetric and asymmetric crypto are usually combined together

5

One-way functions… for kids

What my 2 years old baby can do, but not undo…

6

One-way functions

Informally:

A one-way function is a function that is easy to compute on every input, but hard to invert given the image of a
random input (this property is called pre-image resistance).

Formally:

A function !: 0,1 ∗ → 0,1 ∗ is one-way if ! can be computed by a polynomial time algorithm, but any polynomial time
randomized algorithm (that attempts to compute a pseudo-inverse for ! succeeds with negligible probability.

That is, for all randomized algorithms (, all positive integers) and all sufficiently large * = length(3)
Pr ! (! 3 = ! 3 < *89

where the probability is over the choice of 3 from the discrete uniform distribution on 0,1 :, and the randomness of (.

7

RSA/Factorization problem

Discrete Logarithm problem

One-way functions: examples

So far, it is not know if one-way functions exists. The following could be good candidates:

● Hash function (e.g. SHA-1, MD5, SHA-256,…)
! = # $

where $ is a bit-string of any length and ! of fixed length, and # might have also the properties of

• Second pre-image resistance: given $% and !% = #($%), is hard to find $(such that !% = #($()
• Collision resistance: is hard to find $%, $(such that # $% = #($()

● Diffie-Hellman function
! = *+

where * is the generator of a prime order cyclic group (finite field element or elliptic curve point)

● RSA function (one-way trapdoor function)
! = $, mod 0

where 0 is the product of two primes of roughly the same size

● Block ciphers (e.g. AES, DES, …), stream ciphers (e.g. A5/1, RC4, Salsa20,…) (partially one-way compression functions)
! = 1($, 2)

8

Symmetric and asymmetric cryptography combined, with pirates…

9

Symmetric and asymmetric cryptography combined, in practice

AES Symmetric key !
Ex: 128-bit string

RSA Asymmetric public key
Ex: (#, %)

RSA Asymmetric private key
Ex: ', (,) such that '(= #
and) = %+, mod ɸ(#)

1 = !%mod #

1 = 2(3, !)

2(. , .) is a block cipher
Ex: AES128

bit string message

! = 15mod #

10

Public Key Encryption (PKE)

● A public key encryption scheme (PKE) is a scheme with public and private keys, where we

can encrypt a message using the public key and decrypt using the private key.

● EXAMPLE: ! = #$ mod (with “padding” (RSA-OAEP)

● PROBLEM: usually # is much smaller than ((e.g., if # is 128 bits then (is 3096 bits)

• This implies that if) is too small than #$ mod (is easy to invert.

• Then it is necessary to “pad” # in order to make it a random number < (.

• Unfortunately, security proofs involving padding schemes are not easy.

● SOLUTION: use KEMs…

11

Key Encapsulation Method (KEM)

● A key encapsulation method (KEM) is a scheme with public and private keys, where we can

use the public key to create a ciphertext (encapsulation) containing a randomly chosen

symmetric key. We can decrypt the ciphertext using the private key.

● EXAMPLE:
• Bob (after receiving !, # from Alice)
• Generate random $ ∈ 1,… , !
• (= Hash($)
• 0 = $1 mod !
• Send 0

• Alice
• $ = 05 mod !
• (= Hash($)

12

Key Exchange (KEX)

● A key exchange protocol (KEX) is a protocol that allows Alice and Bob to agree on a shared
symmetric key.

● EXAMPLE:

• Bob

• Chooses random ! ∈ {1, … , Order + }
• Sends - = +/ to Alice

• Alice

• Chooses random 0 ∈ {1, … , Order + }
• Sends A = +2 to Bob

• Both Alice and Bob compute +2/ = (+2)/= (+/)2 and use it as a shared secret.

● NOTE: There exist ways to transform a KEX into a KEM, but not always is possible.

13

Digital signatures

● A digital signature is a mathematical scheme for verifying the authenticity of digital

messages or documents.

● A valid digital signature gives a recipient reason to believe that

• the message was created by a known sender (authentication),

• the sender cannot deny having sent the message (non-repudiation),

• the message was not altered in transit (integrity).

14

Digital signatures: RSA-based example

● Generate public and private key as usual

● To sign:

• ℎ = #$%ℎ(')
• % = ℎ) mod -, using the public - and the private .

● To verify

• ℎ = #$%ℎ(')
• check that %/ = ℎ mod -, using the public - and 0

Basically works as PKE, but adding a hash and inverting public with private key.

15

Digital signatures: discrete log (non-trapdoor) example

Schnorr Identification Protocol :
Goal convince the verifier that
he is interacting with someone
who knows the secret key
that corresponds to the prover’s public key

! = Order((), secret * ∈ 1,… , ! , public / = (0

Prover Verifier

Choose random 1 ∈ 1,… , !

Compute 2 = (3

--- 2 --> Choose random 4 ∈ 1,… , !

Compute 5 = 1 − *4 <-- 4 ---

--- 5 --> check (7/8 = 2

Signer
Choose random 1 ∈ 1,… , !
2 = (3
4 = Hash(2||message)
5 = 1 − *4
Signature = (5, 4)

Verifier
2E = (7/8
4′ = Hash(2′||message)
Check 4E = 4

Fiat-Shamir
Transform

1616

Classical vs Post
Quantum Cryptography

17

Quantum supremacy

Quantum supremacy or "quantum advantage" is the potential ability
of quantum computing devices to solve problems that classical computers
practically cannot.

In computational complexity-theoretic terms, this generally means providing a
superpolynomial speedup over the best known or possible classical algorithm.

So far, quantum supremacy has not been reached yet!

Google previously announced plans to demonstrate quantum supremacy before
the end of 2017 by solving this problem with an array of 49 superconducting
qubits.

In October 2017, IBM demonstrated the simulation of 56 qubits on a conventional
supercomputer, increasing the number of qubits needed for quantum supremacy.

Then, on march 2018, Google announced Bristlecone, a new 72 qubits quantum
processor, but it is still trying to make it work…

18

Quantum computers VS classical crypto

● If a practical quantum computer would exist, it would break

all classical factorization and discrete log based public key crypto

(because of Shor’s algorithm)

and

would force doubling the key sizes of symmetric key cryptography.

(because of Grover’s algorithm)

● Not many other quantum algorithms are known… yet!

● So… what solutions should we adopt?

19

Two alternatives

● The physicists say:

“Use quantum technologies to fight quantum technology!”

QUANTUM CRYPTOGRAPHY

● The mathematicians say:

“Just base your crypto on math that quantum computers can’t break.”

QUANTUM RESISTANT or POST QUANTUM CRYPTOGRAPHY

20

Quantum cryptography in practice

●mainly limited to quantum key distribution,

●provides no authentication (apart from PUF technologies),

● requires direct fiber-optical connection or line of sight,

●has a problem with large distances,

●needs new infrastructure and new technology,

●does not work for mobile phones, sensor networks, cars, ...

●does not scale well,

●based on laws of physics and information-theoretic security, rather
than math and computational complexity

21

Quantum Resistant Cryptography (or PQC)

Quantum computer do not solve all hard problems…

PQC consists of classical algorithms that

• run efficiently on classical computers in terms of time, memory, and
communication

• are hard to break both by classical and quantum algorithms,

• rely on different mathematical problems than integer factorization or
discrete logarithms.

22

NIST Post-quantum competition

● Feb. 2016 Announcement at PQCrypto 2016

● April 2016 NIST releases NISTIR 8105 - Report on Post-Quantum Cryptography

● Dec. 2016 Formal Call for Proposals

● Nov. 2017 Deadline for submissions

● Early 2018 Workshop — Submitter’s Presentations

● 3-5 years Analysis Phase — NIST will report findings

1-2 workshops during this phase

● 2 years later Draft Standards ready

23

NIST candidates

Family Signatures KEM/PKE SUM
Lattice 5 23 28
Codes 3 17 20
Multivariate 7 3 10
Hash 2 0 2
“others” 3 6 9
TOTAL 20 49 69

2424

Code-Based
Cryptography

25

Error correction

01101100

transmit

encode

10011001001 10010001011 10011001001

01101100

correct

decode

26

Error correction to encryption scheme

McEliece cryptosystem

DecryptionEncryption

Plaintext
01101100

add errors

encode

10011001001
Ciphertext
10010001011 10011001001

Plaintext
01101100

error correction

decode

27

Hamming metric

● It is possible to define a metric among vectors, by defining the

Hamming distance

of two such vectors as the number of coordinates the two vectors differ.

● The Hamming weight of a vector is its distance from the zero vector.

● Example:

(1,1,0,1) has Hamming distance 2 from (1,1,1,0), they both have weight 3.

● Vectors can be represented as points.

28

One-way functions in codes

● ! < #, green dots are decodable vectors, orange dots are non-decodable vectors (i.e. invalid ciphertext).

● Encoding is usually done by multiplying a vector by the generator matrix $ of the code, while decoding is hard in
general

● $ is not unique, contains a base of the code space

% = '$ +)

29

One-way trapdoor function in codes: McEliece-like cryptosystems

If code not random linear code, but has special algebraic structure

• the encoding can be performed by ! = # · (& · ' · (), where ' is secret and the public & · ' · (looks as the
generator matrix of a random linear code, for random invertible &, (.

• The decoding of ! + + can be done efficiently only knowing ', &, (.

30

Comparison between RSA and McEliece

RSA McEliece
SK !, #, $ %, &, '
PK (,), where (= !# &′, where &, = %&'
Encryption function - = ./ mod (- = .&, +)
Semantic security No (deterministic enc) Yes (probabilistic enc)
Trapdoor Decomposition of (=

!#, !, # primes
Decomposition of &, =
%&', & structured

Decryption function . = -4 mod ((with CRT) Decode -'89 %89
Decryption failure Yes, as likely as

randomly guessing SK
No (for valid
ciphertext) => no
reaction attacks

Invalid ciphertext Yes, as likely as
randomly guessing SK

Yes

31

Pro VS Cons of McEliece

●Advantages

• Efficient

• Very secure

(Original McEliece has 40 years and more than 30 analysis papers)

●Disadvantages

• Large key sizes

32

Alternatives to McEliece

● Use codes with a more compact representation, and less structure e.g.

• Double circulant codes

• low density parity check codes

● Use a different metric

• rank metric codes

• lattices

With some of these codes there is decoding failure!

33

What about code-based signatures?

Two approaches:

● RSA/Trapdoor approach:

• The one-way function !(#, %) = #(+ % can be used just as the RSA one-way function ! * = *+mod /
to build a cryptographic signature:

add a hash and use trapdoor to sign and one-way function evaluation to verify

• Leads to short signatures but very large keys (because hash could be a non-decodable word!)

● Schnorr/Trapdoorless approach:

• Use the one-way function !(#, %) = #(+ % in the Schorr identification protocol instead of ! * = 01
and convert it to signature with Fiat-Shamir transform, which

• is not known how secure this is against quantum adversaries,

• does not have a quantum analogue

• Leads to very short public keys and very large signatures

34

What about rank metric?

● A vector over a finite field extension is seen as a matrix over the base field

(i.e. every coordinate, being a polynomial, can be seen as a column of the matrix).

● The weight of the vector is the rank of the matrix.

● The complexity of the best known attacks for solving the underlying mathematical

problem (Rank Syndrom Decoding problem) have a quadratic exponential

complexity in the parameters of the system, while for Hamming metric it is linear!

● As a consequence, notably reduced key sizes to achieve same security level than

a Hamming distance-based cryptosystem.

● On the other side there is a small loss on performance.

35

dRANKula and fRANKenstein

dRANKula

● Is an IND-CCA2 PKE secure version of a McEliece-like rank metric based cryptosystem published by Loidreau at PQC
2017, with some improvement in the scheme parameters choice and in the decoding.

● Described in

• dRANKula: a McEliece-like rank metric based cryptosystem implementation
SECRYPT 2018, Porto.

• An IND-CCA transformation of a McEliece like cryptosystem over rank metric
to appear somewhere…

fRANKenstein

● Is a Schnorr-like signature scheme based on double circulant codes in the rank metric, with very small keys and
medium size signatures.
There exist only a couple of quantum resistant, not broken, efficient signature schemes based on codes.

● Described in

• Code-based signature schemes from identification protocols in the rank metric
CANS 2018, Napoli.

• Veron identification and signature schemes in the rank metric
to appear hopefully at PQC 2019.

36

Why DH KEX fails in codes (…and lattices)?

Cyclic	group
Public	parameter:	generator	4

5 6
-- 47 -->

(49)7 <-- 49 -- (47)9

Common	secret:

479

Error	correcting	code
Public	parameter:	generator	matrix	?

@, B @C, B′
-- @? + B -->

??? <-- @C? + B′ -- ???

Common	secret:

? ? ?

The image of G H = 4J is still in 4 The image of G @ = @? + B is not a matrix!!!

37

Homomorphic properties of one-way functions

● ! " = $%:
$%$& = $%'&

! " ! (= !(" + ()
● ! " = ", mod 0:

",(,mod 0 = "(,mod 0
! " ! (= !("()

● ! ", 2 = "3 + 2:
("3 + 2) + ((3 + !) = " + (3 + 2 + !

! ", 2) + !((, ! = !(" + (, 2 + !)
● Codes allow ElGamal constructions (randomized PKE scheme with DH one-way

function)

● What about ! ", 2 !((, !)?

The new error
might be not
decodable!!

3838

Lattice-Based
Cryptography

39

Lattices and codes

● Ideas in lattice-based crypto are very similar to the ones in code-based crypto

• A lattice is a subgroup of the additive group ℝ"
which is isomorphic to the additive group ℤ"…
…in other words, a set of points with $ coordinates,
a sum, a scalar product and the Euclidean metric…

• There exists “good” and “bad” bases
• It is possible to draw the largest “ball” such that

when centered in each lattice points the balls do not
intersect

• A message is a point of the lattice
• To encrypt we add a “small” (inside the circle) error

to the initial message
• Given only the encryption and a bad basis (the

public key) it is difficult to find a combination of the
bad basis that reaches the initial message

• But given a good basis (the secret key)…
• It is easy to recover the initial message, as the

closest point to the encryption point

40

Linear systems

Solving linear systems is easy

(use Gaussian elimination, polynomial time)

● Given
1"# + 2"& + 5"(+ 2") = 9 ,-. 13
12"# + 1"& + 1"(+ 6") = 7 ,-. 13
6"# + 10"& + 3"(+ 6") = 1 ,-. 13
10"# + 4"& + 12"(+ 8") = 0 ,-. 13 .

● Find "#, "&, "(, ")

41

Linear systems with errors

Solving linear systems with errors is hard

● Given
1"# + 2"& + 5"(+ 2") ≈ 9 ,-. 13
12"# + 1"& + 1"(+ 6") ≈ 7 ,-. 13
6"# + 10"& + 3"(+ 6") ≈ 1 ,-. 13
10"# + 4"& + 12"(+ 8") ≈ 0 ,-. 13 .

● Find "#, "&, "(, ") , knowing that the solution is incorrect by ±1…
● The problem is called Learning With Errors (LWE)

● The associated one-way function is
9 ", : = "< + :

Where " = ("#, … , ")), < is the coefficient matrix, : is a vector of small errors

42

Lattice peculiarity: security proofs

●There are security proofs and worst-case to average-case reductions

●Security proofs are not tight: security parameters are chosen based
on best-known attacks, not based on security proofs

Problems

●Attack-complexity not yet deeply understood

●Attacks are improved frequently

4343

Multivariate-Based
Cryptography

44

Underlying problem

Solving a system of ! multivariate polynomial equations in " variables over #$.
This is called the

MP Problem

the MP problem is an NP-Complete problem even for multivariate quadratic system and % = 2

Example with (=), + =):

5-./-0-/0 + 17-04-/ + 23-.0-04 + 13 -. + 12-0 + 5 = 0

12-./-0/-/ + 15-.-// + 25-0-// + 5 -. + 6-/ + 12 = 0

28-.-0-/4 + 14-0/-/0 + 16-.-/ + 32 -0 + 7-/ + 10 = 0

45

Basic idea

● System parameters !, # ∈ ℕ
● Key generation: choose “random” & ∈ ℳ()*+,)*, , such that &-. is secretly

known.

● Public key: &
● Secret key: &-.

● Encryption: to encrypt a message ! ∈)*+, compute / = &(!)
● Decryption: ! = &-. /

Problem: how do you find & and &-. such that & is a hard instance of ℳ(?

46

One-way trapdoor function for MP problem

Usually, ! is constructed as a sequence of invertible functions, e.g.

! = # ∘ % ∘ &

With #, & multivariate linear and % quadratic with a easy to invert

structure.

Unfortunately, this often does NOT result in a hard instance of ℳ)!

47

Concern about MQ schemes

●Few recent secure examples (not yet broken?) are
• Rainbow signature scheme
• Quartz of HFEv-signature scheme
• PMI+public key encryption scheme

●Many public-key encryption schemes have been broken

●Efficient (sparse) ℳ" instances have problems with randomness

4848

Isogeny-Based
Cryptography

49

Classic ECC vs Isogeny based crypto

● Classic ECC: discover hidden relation between two points P, P’ on a given elliptic curve E

● Isogeny-based crypto: find connection between two elliptic curves E, E’ inside a certain large pool

Classic DH Classic ECC Isogeny-based
Crypto

Public
parameter

Group generator ! A set of points (elliptic curve)
+
Base Point "

A set of curves
+
Base Curve #

Secret
key

Scalar $
(sends a group element
to another)

Scalar $
(sends a point to another)

Isogeny %
(sends a curve to
another)

Public key The group element !& The point $" The curve % #
(plus some additional
info)

50

Two and three isogeny maps

● Two-isogenies maps: each curve is connected to 3 other curves

● Three-isogenies maps: each curve is connected to 4 other

51

Underlying problem

Problem:

Given an elliptic curve E’ obtained by applying a random sequence of two- or three-

isogenies starting from a base curve E, find how to get from E to E’ using the same

map.

This problem is hard only for some special family of curves, the so called

isogeny class of supersingular elliptic curves.

52

Supersingular isogeny class

Definition:

The supersingular isogeny class is the set of all supersingular elliptic

curves over a finite field with p2 elements, where p is a prime number

of a rather specific form, chosen such that all two- and three-isogenies

can be described in a convenient way.

53

Supersingular-Isogeny Diffie-Hellman

● Alice and Bob agree on a pool of curves and a starting
curve E.

● Alice applies a secret random sequence of two-
isogenies, resulting in an elliptic curve EA.

● Bob secretly walks a random trail of three-isogenies in
order to end up at a curve EB.

● Alice and bob exchange EA and EB publicly,

● Alice reapplies her sequence of two-isogenies starting
from Bob’s curve EB,

● Bob does the same starting from Alice’s curve EA.

● It turns out Alice and Bob eventually end up with
the same elliptic curve EAB, which is the common secret,
only known by Alice and Bob

54

Pro vs Cons

● Pro

• Small communication overhead.

• Small keys.

• Only setting where Non-interactive Key Exchange (as DH) are possible (CSIDH)!

● Cons

• High computational cost.

• Very recent proposal; security not yet well understood.

• First proposal with ordinary curves broken by quantum computers.

• New proposal using supersingular curves under examination.

5555

Hash-Based
Cryptography

56

Main idea

● Use a hash chain to prove knowledge of a secret

• Alice computes ! = #$%ℎ #$%ℎ #$%ℎ #$%ℎ ' and sends it to Bob

• Every time Alice wants to authenticate shows to Bob the previous intermediate value of the chain,

i.e #$%ℎ #$%ℎ #$%ℎ ' , then #$%ℎ #$%ℎ ' , then #$%ℎ('), then '.
• This way Alice can authenticate to Bob a finite number of times

● The same principle can be used to build stateful hash-based signatures, such as XMSS, or LMSS.

● By creating a large enough state to cover the number of possible usages, the signature can be treated
as stateless. The two stateless signature schemes presented at NIST competition are called SPHINCS+
and GRAVITHY-SPHINCS (very similar).

● Hash-based signatures allow many trade offs, but in general have very slow key generation and
verification.

● Hash-based signatures only rely their security on the properties of the hash function.

● It is not known how to build efficient PKE or KEM using only hash…

5757

Conclusions

58

PQC – Public key encryption and signatures schemes

• Most tested

• Biggest key sizes

• Fast

Codes

1

• Relatively “new”

• Small-ish key sizes

• Fastest

Lattices

2

• Graphs and elliptic curve
related

• Smallest key sizes

• Slow

Isogenies

3

• Proposals look fragile

• Small-ish key sizes
(for signatures)

• Average speed

Multivariate

4

59

• Easy implementation
• Fast signing
• Small key sizes

PQC – Hash-based signatures schemes

• Slow key generation
• Somehow slow validation
• Stateful – Stateless
• Only signatures

PROS CONS

60

Issues with PQC

● Some have slower computation (e.g isogenies)

● Some have larger keys, signatures, ciphertexts (e.g. codes)

● Some have security less well understood (e.g. multivariate, lattices, isogenies)

● Some have design issues (e.g., stateful hash-based signing)

All this drawbacks should be taken into consideration when designing a modern

secure communication system, in order to choose the proper solution, or at least the

“less worse”.

61

Rough performance comparison

Take it with a grain of salt…

Family Key
generation

Public key
encryption/
verification

Private key
decryption/
signing

Code-based slow fast medium
Hash-based slow fast slow
Lattice-based fast fast fast
Multivariate-
based

slow fast medium

Isogeny-based slow slow slow

62

To conclude, should we be worried?

● Post-quantum schemes already exists for powerful devices but are very challenging

for constrained devices such as microprocessors, HSMs, etc.

● RSA is very old and easy to be implemented unsecurely.

● ECC is very elegant and efficient but somehow limited to very few use cases.

● Hybrid encryption could be a good temporary solution.

● Designing new protocols to better fit post quantum schemes limitation is certainly a

must.

● …and to answer the title’s question… yes, we should!

63

We are hiring!

64

Thanks for your attentions!

