

Knot-based Key Exchange Protocol

Silvia Sconza, joint work with Arno Wildi

CrypTO Seminars, Politecnico di Torino

March 22nd, 2024

イロト イポト イヨト イヨト

Ξ

University of Zurich

1 Introduction to Cryptography

- 2 Introduction to Knot Theory
- 3 Knot-based Key Exchange Protocol
- 4 Cryptoanalysis
- **5** Open questions and future work

< ロト (同) (三) (三)

Diffie-Hellman Key Exchange

Introduction to Cryptography

Jurich^{uzh}

University of

[Picture from Borradaile, G. "Defend Dissent." Corvallis: Oregon State University, 2021.]

Silvia Sconza, joint work with Arno Wildi

Knot-based Key Exchange Protocol

୬ < ୯ 3

≣⇒ ≣

University of Zurich

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.

《曰》 《國》 《臣》 《臣》

E

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

- 1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
- 2. Alice chooses $a \in \{1, \dots, \text{ord}(G)\}$, computes g^a and sends it to Bob. Her secret key is a.

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

- 1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
- 2. Alice chooses $a \in \{1, \dots, \text{ord}(G)\}$, computes g^a and sends it to Bob. Her secret key is a.
- 3. Bob chooses $b \in \{1, \dots, \text{ord}(G)\}$, computes g^b and sends it to Alice. His secret key is b.

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

- 1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
- 2. Alice chooses $a \in \{1, \dots, \text{ord}(G)\}$, computes g^a and sends it to Bob. Her secret key is a.
- 3. Bob chooses $b \in \{1, ..., ord(G)\}$, computes g^{b} and sends it to Alice. His secret key is b.
- 4. Alice computes $(g^b)^a = g^{ba}$.

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

- 1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
- 2. Alice chooses $a \in \{1, \dots, \text{ord}(G)\}$, computes g^a and sends it to Bob. Her secret key is a.
- 3. Bob chooses $b \in \{1, ..., ord(G)\}$, computes g^{b} and sends it to Alice. His secret key is b.
- 4. Alice computes $(g^b)^a = g^{ba}$.
- 5. Bob computes $(g^a)^b = g^{ab}$.

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

- 1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
- 2. Alice chooses $a \in \{1, \dots, \text{ord}(G)\}$, computes g^a and sends it to Bob. Her secret key is a.
- 3. Bob chooses $b \in \{1, ..., ord(G)\}$, computes g^{b} and sends it to Alice. His secret key is b.
- 4. Alice computes $(g^b)^a = g^{ba}$.
- 5. Bob computes $(g^a)^b = g^{ab}$.

The secret common key is $g^{ba} = g^{ab}$.

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

- 1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
- 2. Alice chooses $a \in \{1, \dots, \text{ord}(G)\}$, computes g^a and sends it to Bob. Her secret key is a.
- 3. Bob chooses $b \in \{1, ..., ord(G)\}$, computes g^b and sends it to Alice. His secret key is b.
- 4. Alice computes $(g^b)^a = g^{ba}$.
- 5. Bob computes $(g^a)^b = g^{ab}$.

The secret common key is $g^{ba} = g^{ab}$.

• Diffie-Hellman Problem (DHP): Let G be a finite cyclic group and let g be a generator. Given g^a and g^b , find g^{ab} .

《日》 《圖》 《臣》 《臣》

University of Zurich

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$\star: G \times X \longrightarrow X$$
$$(g, x) \mapsto g \star x$$

s.t. $e \star x = x$ and $g \star (h \star x) = (gh) \star x$ for all $g, h \in G$ and $x \in X$.

イロト イポト イヨト イヨト

3

University of Zurich

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$\star: G \times X \longrightarrow X$$
$$(g, x) \mapsto g \star x$$

s.t. $e \star x = x$ and $g \star (h \star x) = (gh) \star x$ for all $g, h \in G$ and $x \in X$. Example:

イロト イポト イヨト イヨト

3

University of Zurich

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$\star: G \times X \longrightarrow X$$
$$(g, x) \mapsto g \star x$$

s.t. $e \star x = x$ and $g \star (h \star x) = (gh) \star x$ for all $g, h \in G$ and $x \in X$.

Example: Let X be a cyclic finite group of order p

University of Zurich

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$\star: G \times X \longrightarrow X$$
$$(g, x) \mapsto g \star x$$

s.t. $e \star x = x$ and $g \star (h \star x) = (gh) \star x$ for all $g, h \in G$ and $x \in X$.

Example: Let X be a cyclic finite group of order p and $G = \mathbb{Z}_p^{\times}$.

University of Zurich

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$\star: G \times X \longrightarrow X$$
$$(g, x) \mapsto g \star x$$

s.t. $e \star x = x$ and $g \star (h \star x) = (gh) \star x$ for all $g, h \in G$ and $x \in X$.

Example: Let X be a cyclic finite group of order p and $G = \mathbb{Z}_p^{\times}$. Then

$$\mathbb{Z}_p^{\times} \times X \longrightarrow X (n, x) \mapsto x^n$$

is an **action** of \mathbb{Z}_p^{\times} over X.

《日》 《圖》 《臣》 《臣》

Generalised Diffie-Hellman Key Exchange

- 1. Alice and Bob publicly agree on an abelian group G, an action \star of G on a finite set X and an element $x \in X$.
- Alice chooses a ∈ G, computes a ★ x and sends it to Bob. Her secret key is a.
- Bob chooses b ∈ G, computes b ★ x and sends it to Alice. His secret key is b.
- 4. Alice computes $a \star (b \star x)$.
- 5. Bob computes $b \star (a \star x)$.

The secret common key is $(ab) \star x = (ba) \star x$.

Generalised Diffie-Hellman Key Exchange

- 1. Alice and Bob publicly agree on an abelian group G, an action \star of G on a finite set X and an element $x \in X$.
- Alice chooses a ∈ G, computes a ★ x and sends it to Bob. Her secret key is a.
- Bob chooses b ∈ G, computes b ★ x and sends it to Alice. His secret key is b.
- 4. Alice computes $a \star (b \star x)$.
- 5. Bob computes $b \star (a \star x)$.

The secret common key is $(ab) \star x = (ba) \star x$.

• Diffie-Hellman Group Action Problem (DHGAP): Let G, X and \star as above. Given $x, y, z \in X$ such that $y = g \star x$ and $z = h \star x$ for some $g, h \in G$, find $(gh) \star x$.

University of Zurich

A semigroup is a set S together with a *binary operation* $\cdot : S \times S \rightarrow S$ that satisfies the associative property.

イロト イポト イヨト イヨト

Ξ

University of Zurich

A semigroup is a set S together with a *binary operation* $\cdot : S \times S \rightarrow S$ that satisfies the associative property.

Given S an abelian semigroup and a set X, an S-action on X (or a semigroup action of \overline{S} on X) is a map

$$\star: S \times X \longrightarrow X$$
$$(s, x) \mapsto s \star x$$

s.t. $s \star (r \star x) = (s \cdot r) \star x$ for all $s, r \in S$ and $x \in X$

University of Zurich

Generalised Diffie-Hellman Key Exchange [4]

1. Alice and Bob publicly agree on an abelian <u>semigroup</u> S, an <u>S</u>-action \star on a finite set X and an element $x \in X$.

イロト イポト イヨト イヨト

Ξ

Generalised Diffie-Hellman Key Exchange [4]

- Alice and Bob publicly agree on an abelian <u>semigroup</u> S, an <u>S</u>-action
 ★ on a finite set X and an element x ∈ X.
- Alice chooses a ∈ S, computes a ★ x and sends it to Bob. Her secret key is a.
- Bob chooses b ∈ S, computes b ★ x and sends it to Alice. His secret key is b.
- 4. Alice computes $a \star (b \star x)$.
- 5. Bob computes $b \star (a \star x)$.

The secret common key is $(ab) \star x = (ba) \star x$.

► 4 E F

Generalised Diffie-Hellman Key Exchange [4]

- Alice and Bob publicly agree on an abelian <u>semigroup</u> S, an <u>S</u>-action
 ★ on a finite set X and an element x ∈ X.
- Alice chooses a ∈ S, computes a ★ x and sends it to Bob. Her secret key is a.
- Bob chooses b ∈ S, computes b ★ x and sends it to Alice. His secret key is b.
- 4. Alice computes $a \star (b \star x)$.
- 5. Bob computes $b \star (a \star x)$.

The secret common key is $(ab) \star x = (ba) \star x$.

• Diffie-Hellman Semigroup Action Problem (DHSAP): Let S, X and * as above. Given $x, y, z \in X$ such that y = s * x and z = r * x for some $s, r \in S$, find (gh) * x.

Introduction to Knot Theory

University of Zurich

1 Introduction to Cryptography

2 Introduction to Knot Theory

3 Knot-based Key Exchange Protocol

4 Cryptoanalysis

5 Open questions and future work

< ロト (同) (三) (三)

Introduction to Knot Theory

University of Zurich

A *knot* is a smooth embedding $\mathbb{S}^1 \to \mathbb{R}^3$, considered up to ambient isotopy.

Silvia Sconza, joint work with Arno Wildi

Knot-based Key Exchange Protocol

イロト イポト イヨト イヨト

Ξ

A *knot* is a smooth embedding $\mathbb{S}^1 \to \mathbb{R}^3$, considered up to ambient isotopy.

Unknot \mathcal{U}

Trefoil knot

Oriented Figure-Eight knot

(日) (四) (日) (日) (日)

Ξ

A *knot* is a smooth embedding $\mathbb{S}^1 \to \mathbb{R}^3$, considered up to ambient isotopy.

gure-⊏igr knot

N.B.: We will consider just oriented knots.

Given two oriented knots K and K', we can define the *connected sum* K # K': cut the two knots and glue the corresponding ends (given by the orientation).

Example:

< E >

Given two oriented knots K and K', we can define the *connected sum* K # K': cut the two knots and glue the corresponding ends (given by the orientation).

Example:

∃ ≥

Definitions

Introduction to Knot Theory

University of Zurich

Given two oriented knots K and K', we can define the *connected sum* K # K': cut the two knots and glue the corresponding ends (given by the orientation).

Example:

4 D > 4 A > 4 B > 1

4 ∃ ≥

Definitions

Introduction to Knot Theory

University of Zurich

Given two oriented knots K and K', we can define the *connected sum* K # K': cut the two knots and glue the corresponding ends (given by the orientation).

Example:

N.B.: With this operation, the set of oriented knots forms an abelian semigroup: (**oKnots**, #, U).

Definitions

Introduction to Knot Theory

University of Zurich

Given two oriented knots K and K', we can define the *connected sum* K # K': cut the two knots and glue the corresponding ends (given by the orientation).

Example:

• Decomposition Problem: Given a knot K, find its prime decomposition $K = K_1 \# \cdots \# K_n$.

Theorem (Reidemeister):

Two knots are the same if and only if they are related by a finite sequence of the Reidemeister moves:

《曰》 《國》 《臣》 《臣》

E

Theorem (Reidemeister):

Two knots are the same if and only if they are related by a finite sequence of the Reidemeister moves:

• Recognition Problem: Given two knot diagrams K and K'. Do they represent the same knot?

Theorem (Reidemeister):

Two knots are the same if and only if they are related by a finite sequence of the Reidemeister moves:

• Recognition Problem: Given two knot diagrams K and K'. Do they represent the same knot?

 \uparrow This is a hard mathematical problem. \uparrow

《曰》 《國》 《臣》 《臣》

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Ξ

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Fact: All known computable invariants are not complete.

A B + A B + A B +
 A
 B + A B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Э

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Fact: All known computable invariants are not complete.

We will use finite type invariants [3].

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Fact: All known computable invariants are not complete.

We will use finite type invariants [3].

Conjecture: The set of all finite type invariants distinguish knots.

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Fact: All known computable invariants are not complete.

We will use finite type invariants [3].

Conjecture: The set of all finite type invariants distinguish knots.

<u>Fact:</u> A finite type invariant of type d can be computed in

$\mathcal{O}(c^d),$

where c is the number of crossings of the knot.

Fixed a $d \in \mathbb{N}$, we can choose between <u>several distinct</u> finite type invariants of type d.

d	0	1	2	3	4	5	6
# <i>d</i> -Finite type invariants	1	1	2	3	6	10	19
d	7	8	9	10	11	12	
# <i>d</i> -Finite type invariants	33	60	104	184	316	548	

<ロト (四) (三) (三) (三)

Introduction to Knot Theory

University of Zurich^{12H}

University of Zurich

Consider a planar representation of a knot K.

<ロト (四) (三) (三) (三)

Introduction to Knot Theory

University of Zurich

Consider a planar representation of a knot K.

• Choose a starting point and an orientation. Enumerate the edges starting from 1, following the orientation.

イロト イポト イヨト イヨト

Introduction to Knot Theory

University of Zurich

Consider a planar representation of a knot K.

- Choose a starting point and an orientation. Enumerate the edges starting from 1, following the orientation.
- To each crossing, we associate a list of four edges:
 (i) starting from the incoming undergoing edge;
 (ii) ordering the edges counterclockwise.

University of Zurich

Consider a planar representation of a knot K.

- Choose a starting point and an orientation. Enumerate the edges starting from 1, following the orientation.
- To each crossing, we associate a list of four edges:
 (i) starting from the incoming undergoing edge;
 (ii) ordering the edges counterclockwise.

Knot-based Key Exchange Protocol

University of Zurich

1 Introduction to Cryptography

2 Introduction to Knot Theory

3 Knot-based Key Exchange Protocol

4 Cryptoanalysis

5 Open questions and future work

< ロト (同) (三) (三)

Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.

《曰》 《國》 《臣》 《臣》

Knot-based Key Exchange I

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K and sends it to Bob. Her secret key is A.

《日》 《圖》 《문》 《문》

Knot-based Key Exchange I

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K and sends it to Alice. His secret key is *B*.

< ロト (同) (三) (三)

Knot-based Key Exchange I

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.

Knot-based Key Exchange I

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.
- 5. Bob computes B#(A#K) = B#A#K.

Knot-based Key Exchange I

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.
- 5. Bob computes B#(A#K) = B#A#K.

The secret common key is A # B # K = B # A # K.

Knot-based Key Exchange I

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.
- 5. Bob computes B#(A#K) = B#A#K.

The secret common key is A # B # K = B # A # K.

Problem I: In this case, given A # K and K, it is easy to find A.

《曰》 《國》 《臣》 《臣》

Knot-based Key Exchange I

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B#K and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.
- 5. Bob computes B#(A#K) = B#A#K.

The secret common key is A # B # K = B # A # K.

Problem I: In this case, given A # K and K, it is easy to find A.

We need to "complicate" A # K and B # K, in order to make them *unrecognisable*.

Silvia Sconza, joint work with Arno Wildi

Second idea

Knot-based Key Exchange Protocol

University of Zurich

Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.

《曰》 《國》 《臣》 《臣》

Knot-based Key Exchange II

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.

Knot-based Key Exchange II

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K, <u>applies random Reidemeister moves</u> and sends it to Bob. Her secret <u>key is A</u>.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.

Knot-based Key Exchange II

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.

《日》 《圖》 《臣》 《臣》

Knot-based Key Exchange II

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.
- 5. Bob computes B#(A#K) = B#A#K.

Knot-based Key Exchange II

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K, <u>applies random Reidemeister moves</u> and sends it to Bob. Her secret <u>key is A</u>.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.
- 5. Bob computes B#(A#K) = B#A#K.

The secret common key is A # B # K = B # A # K.

イロト イポト イヨト イヨト

Knot-based Key Exchange II

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K, <u>applies random Reidemeister moves</u> and sends it to Bob. Her secret <u>key is A</u>.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.
- 5. Bob computes B#(A#K) = B#A#K.

The secret common key is A # B # K = B # A # K.

Problem II: A # B # K and B # A # K are given in different representations.

(日) (문) (문) (문)

Knot-based Key Exchange II

- 1. Alice and Bob publicly agree on a positive integer *n* and a knot *K* with at most *n* crossings.
- 2. Alice chooses a knot A of at most n crossings, computes A # K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.
- 4. Alice computes A # (B # K) = A # B # K.
- 5. Bob computes B#(A#K) = B#A#K.

The secret common key is A # B # K = B # A # K.

Problem II: A # B # K and B # A # K are given in different representations. We can apply an *invariant* to obtain the same value.

Silvia Sconza, joint work with Arno Wildi

Knot-based Key Exchange Protocol

Knot-based Key Exchange (final version)

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.

《曰》 《國》 《臣》 《臣》

Knot-based Key Exchange (final version)

- 1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
- Alice chooses a knot A of at most n crossings, computes A#K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.

Knot-based Key Exchange (final version)

- 1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
- Alice chooses a knot A of at most n crossings, computes A#K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.

Knot-based Key Exchange (final version)

- 1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
- Alice chooses a knot A of at most n crossings, computes A#K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B#K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.
- 4. Alice computes $\underline{V}(A \# (B \# K)) = \underline{V}(A \# B \# K)$.

Knot-based Key Exchange (final version)

- 1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
- Alice chooses a knot A of at most n crossings, computes A#K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B#K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.
- 4. Alice computes $\underline{V}(A\#(B\#K)) = \underline{V}(A\#B\#K)$.
- 5. Bob computes $\underline{V}(B\#(A\#K)) = \underline{V}(B\#A\#K)$.

Knot-based Key Exchange (final version)

- 1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
- Alice chooses a knot A of at most n crossings, computes A#K, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
- 3. Bob chooses a knot *B* of at most *n* crossings, computes B # K, applies random Reidemeister moves and sends it to Alice. His secret key is *B*.
- 4. Alice computes $\underline{V}(A\#(B\#K)) = \underline{V}(A\#B\#K)$.
- 5. Bob computes $\underline{V}(B\#(A\#K)) = \underline{V}(B\#A\#K)$.

The secret common key is V(A # B # K) = V(B # A # K).

Knot-based Key Exchange Protocol

University of Zurich

Remarks:

Silvia Sconza, joint work with Arno Wildi

Knot-based Key Exchange Protocol

Remarks:

• Underlying mathematical problem: Given V(K), V(A#K) and V(B#K), find V(A#B#K).

 $[\]label{eq:linearized_linearized$

Remarks:

Underlying mathematical problem: Given V(K), V(A#K) and V(B#K), find V(A#B#K).
 Related mathematical problem: Given K and A#K, find A (which is unique).

¹ https://github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay イロト イラト イミト イミト ミークへ ペ

Remarks:

- Underlying mathematical problem: Given V(K), V(A#K) and V(B#K), find V(A#B#K).
 Related mathematical problem: Given K and A#K, find A (which is unique).
- Recall that (oKnots, #, U) is an *abelian semigroup*. Moreover, U is the only invertible element.

Silvia Sconza, joint work with Arno Wildi

¹ https://github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay イロト イラト イミト イミト ミークへ ペ

Remarks:

- Underlying mathematical problem: Given V(K), V(A#K) and V(B#K), find V(A#B#K).
 Related mathematical problem: Given K and A#K, find A (which is unique).
- Recall that (oKnots, #, U) is an *abelian semigroup*. Moreover, U is the only invertible element.
- To apply random Reidemeister moves, we use the program *Randomeister*¹.

Silvia Sconza, joint work with Arno Wildi

¹ https://github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay イロト イラト イミト イミト ミークへ 🤍

1 Introduction to Cryptography

2 Introduction to Knot Theory

3 Knot-based Key Exchange Protocol

4 Cryptoanalysis

5 Open questions and future work

< ロト (同) (三) (三)

Cryptoanalysis

University of Zurich

• Underlying mathematical problem: Given V(K), V(A#K) and V(B#K), find V(A#B#K).

- Underlying mathematical problem: Given V(K), V(A#K) and V(B#K), find V(A#B#K).
- Some invariants admit a connected-sum formula, i.e. $\Phi(K\#K') = \Phi(K) \cdot \Phi(K'),$

which could solve the problem.

イロト イポト イヨト イヨト

• Underliving mathematical problem: Given V(K), V(A#K) and V(B#K), find V(A#B#K).

Some invariants admit a connected-sum formula, i.e.

$$\Phi(K\#K')=\Phi(K)\cdot\Phi(K'),$$

which could solve the problem.

N.B. Finite type invariants do <u>not</u> have such a formula.

Cryptoanalysis

University of Zurich

The best attack is a *sort of* brute force attack.

Silvia Sconza, joint work with Arno Wildi

Knot-based Key Exchange Protocol

イロト イヨト イヨト イヨト

The best attack is a *sort of* brute force attack.

1. Compute A' # K for all knots A' with at most *n* crossings.

イロト イポト イヨト イヨト

Cryptoanalysis

The best attack is a *sort of* brute force attack.

Compute A'#K for all knots A' with at most n crossings.
 N.B. It is <u>not</u> enough to just compare A#K with A'#K for all K', because the Recognition Problem is hard.

Cryptoanalysis

The best attack is a *sort of* brute force attack.

- Compute A'#K for all knots A' with at most n crossings.
 N.B. It is <u>not</u> enough to just compare A#K with A'#K for all K', because the Recognition Problem is hard.
- 2. Compute $\Phi(A' \# K)$ and compare it to $\Phi(A \# K)$ for all A', where Φ is a fixed *good* invariant.

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cryptoanalysis

The best attack is a *sort of* brute force attack.

- Compute A'#K for all knots A' with at most n crossings.
 N.B. It is <u>not</u> enough to just compare A#K with A'#K for all K', because the Recognition Problem is hard.
- 2. Compute $\Phi(A' \# K)$ and compare it to $\Phi(A \# K)$ for all A', where Φ is a fixed *good* invariant.

N.B. We do <u>not</u> have complete invariants.

I D > 4 B > 4 B > 4

Cryptoanalysis

The best attack is a *sort of* brute force attack.

- Compute A'#K for all knots A' with at most n crossings.
 N.B. It is <u>not</u> enough to just compare A#K with A'#K for all K', because the Recognition Problem is hard.
- 2. Compute $\Phi(A'\#K)$ and compare it to $\Phi(A\#K)$ for all A', where Φ is a fixed *good* invariant.

N.B. We do <u>not</u> have complete invariants.

3. If you obtain just <u>one</u> correspondence, it is A.

The best attack is a *sort of* brute force attack.

- Compute A'#K for all knots A' with at most n crossings.
 N.B. It is <u>not</u> enough to just compare A#K with A'#K for all K', because the Recognition Problem is hard.
- 2. Compute $\Phi(A' \# K)$ and compare it to $\Phi(A \# K)$ for all A', where Φ is a fixed *good* invariant.

N.B. We do <u>not</u> have complete invariants.

If you obtain just <u>one</u> correspondence, it is *A*.
 In general, you will obtain <u>more than one</u> correspondence, so you have to choose *another* invariant and restart.

Cryptoanalysis

University of Zurich

Goal: choose *n* to reach a 128-bit security level $\rightarrow 2^{128}$ operations

Polynomial time knot polynomial Z_1 [1, 5] $\rightarrow n^6$ operations

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Goal: choose *n* to reach a 128-bit security level $\rightarrow 2^{128}$ operations

Polynomial time knot polynomial Z_1 [1, 5] $\rightarrow n^6$ operations

$$Z_1(K_1 \# K_2) = \Delta_{K_2}^2 Z_1(K_1) + \Delta_{K_1}^2 Z_1(K_2)$$

- ロト - (司ト - (日ト - (日ト

Goal: choose *n* to reach a 128-bit security level $\rightarrow 2^{128}$ operations

Polynomial time knot polynomial Z_1 [1, 5] $\sim n^6$ operations

$$Z_1(K_1 \# K_2) = \Delta_{K_2}^2 Z_1(K_1) + \Delta_{K_1}^2 Z_1(K_2)$$

- ロト - (司ト - (日ト - (日ト

Cryptoanalysis

Goal: choose *n* to reach a 128-bit security level $\rightarrow 2^{128}$ operations

 $\frac{\text{Polynomial time knot polynomial } Z_1 \ [1, 5] \ \rightsquigarrow \ n^6 \text{ operations}}{\text{Alexander Polynomial } \Delta_K} \ \rightsquigarrow \ n^3 \text{ operations}$

$$Z_1(K_1 \# K_2) = \Delta_{K_2}^2 Z_1(K_1) + \Delta_{K_1}^2 Z_1(K_2)$$

• □ > < □ > < □ > < □ > < □ >

Goal: choose *n* to reach a 128-bit security level $\rightarrow 2^{128}$ operations

 $\frac{\text{Polynomial time knot polynomial } Z_1 \ [1, 5] \ \rightsquigarrow \ n^6 \text{ operations}}{\text{Alexander Polynomial } \Delta_K \ \rightsquigarrow \ n^3 \text{ operations}}$

$$Z_1(K_1 \# K_2) = \Delta_{K_2}^2 Z_1(K_1) + \Delta_{K_1}^2 Z_1(K_2)$$

It is enough to consider $K_1 # K_2 # K_3 # K_4 # K_5$ with K_i prime knots with 19 crossings, since

 $#\{\text{prime knots with 19 crossings}\} \approx 3 \cdot 10^8 \\ \Rightarrow n = 95$

- 1 Introduction to Cryptography
- 2 Introduction to Knot Theory
- 3 Knot-based Key Exchange Protocol
- 4 Cryptoanalysis
- 5 Open questions and future work

< ロト (同) (三) (三)

Open questions and future work

University of Zurich

Open questions:

Silvia Sconza, joint work with Arno Wildi

Knot-based Key Exchange Protocol

イロト イヨト イヨト イヨト

Future work

Open questions and future work

University of Zurich

Open questions:

• Find a better invariant.

イロト イヨト イヨト イヨト

Open questions:

- Find a better invariant.
- How many times do we have to apply Reidemester moves to get an equivalent knot that looks as random as possible?

Open questions:

- Find a better invariant.
- How many times do we have to apply Reidemester moves to get an equivalent knot that looks as random as possible?
- Given a string of quaterns of integers, when it represents an encoded knot?

Open questions:

- Find a better invariant.
- How many times do we have to apply Reidemester moves to get an equivalent knot that looks as random as possible?
- Given a string of quaterns of integers, when it represents an encoded knot?
- No attempt has yet been made to implement our protocol.

Thanks for your attention!

(Submitted to Cryptology ePrint Archive)

Silvia Sconza, joint work with Arno Wildi

Knot-based Key Exchange Protocol

<ロト (四) (三) (三) (三)

- Dror Bar-Natan and Roland van der Veen. "A polynomial time knot polynomial". In: *Proceedings of the American Mathematical Society* 147.1 (2019), pp. 377–397.
- [2] Whitfield Diffie and Martin Hellman. "New Directions in cryptography (1976)". In: IEEE Trans. Inform. Theory 22 (1976), pp. 644–654.
- [3] Mikhail Goussarov, Michael Polyak, and Oleg Viro. "Finite-type invariants of classical and virtual knots". In: *Topology* 39.5 (2000), pp. 1045–1068.
- [4] Gérard Maze, Chris Monico, and Joachim Rosenthal. "Public Key Cryptography based on Semigroup Actions". In: Adv. in Math. of Communications 1.4 (2007), pp. 489–507.
- [5] Robert John Quarles. A New Perspective on a Polynomial Time Knot Polynomial. Louisiana State University and Agricultural & Mechanical College, 2022.

《曰》 《國》 《臣》 《臣》