Knot-based Key Exchange Protocol

Silvia Sconza,
joint work with Arno Wildi
CrypTO Seminars, Politecnico di Torino

March 22nd, 2024

Table of Contents

1 Introduction to Cryptography

2 Introduction to Knot Theory

3 Knot-based Key Exchange Protocol

4 Cryptoanalysis

5 Open questions and future work

Diffie-Hellman Key Exchange

University of Zurich ${ }^{\text {VZH }}$

[Picture from Borradaile, G. "Defend Dissent." Corvallis: Oregon State University, 2021.]

Diffie-Hellman Key Exchange

 Zurich ${ }^{\text {UZH }}$
Diffie-Hellman Key Exchange (DHKE), 1976 [2]

1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
2. Alice chooses $a \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{a} and sends it to Bob. Her secret key is a.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
2. Alice chooses $a \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{a} and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{b} and sends it to Alice. His secret key is b.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
2. Alice chooses $a \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{a} and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{b} and sends it to Alice. His secret key is b.
4. Alice computes $\left(g^{b}\right)^{a}=g^{b a}$.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
2. Alice chooses $a \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{a} and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{b} and sends it to Alice. His secret key is b.
4. Alice computes $\left(g^{b}\right)^{a}=g^{b a}$.
5. Bob computes $\left(g^{a}\right)^{b}=g^{a b}$.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
2. Alice chooses $a \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{a} and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{b} and sends it to Alice. His secret key is b.
4. Alice computes $\left(g^{b}\right)^{a}=g^{b a}$.
5. Bob computes $\left(g^{a}\right)^{b}=g^{a b}$.

The secret common key is $g^{b a}=g^{a b}$.

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE), 1976 [2]

1. Alice and Bob publicly agree on a cyclic finite group G and a generator g.
2. Alice chooses $a \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{a} and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in\{1, \ldots, \operatorname{ord}(G)\}$, computes g^{b} and sends it to Alice. His secret key is b.
4. Alice computes $\left(g^{b}\right)^{a}=g^{b a}$.
5. Bob computes $\left(g^{a}\right)^{b}=g^{a b}$.

The secret common key is $g^{b a}=g^{a b}$.

- Diffie-Hellman Problem (DHP): Let G be a finite cyclic group and let g be a generator. Given g^{a} and g^{b}, find $g^{a b}$.

Group actions

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$
\begin{aligned}
& \star: G \times X \longrightarrow X \\
&(g, x) \mapsto g \star x
\end{aligned}
$$

s.t. $e \star x=x$ and $g \star(h \star x)=(g h) \star x$ for all $g, h \in G$ and $x \in X$.

Group actions

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$
\begin{aligned}
& \star: G \times X \longrightarrow X \\
&(g, x) \mapsto g \star x
\end{aligned}
$$

s.t. $e \star x=x$ and $g \star(h \star x)=(g h) \star x$ for all $g, h \in G$ and $x \in X$.

Example:

Group actions

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$
\begin{aligned}
& \star: G \times X \longrightarrow X \\
&(g, x) \mapsto g \star x
\end{aligned}
$$

s.t. $e \star x=x$ and $g \star(h \star x)=(g h) \star x$ for all $g, h \in G$ and $x \in X$.

Example: Let X be a cyclic finite group of order p

Group actions

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$
\begin{aligned}
& \star: G \times X \longrightarrow X \\
&(g, x) \mapsto g \star x
\end{aligned}
$$

s.t. $e \star x=x$ and $g \star(h \star x)=(g h) \star x$ for all $g, h \in G$ and $x \in X$.

Example: Let X be a cyclic finite group of order p and $G=\mathbb{Z}_{p}^{\times}$.

Group actions

Given G an abelian group with identity element e and a set X, a group action of G on X is a map

$$
\begin{aligned}
& \star: G \times X \longrightarrow X \\
&(g, x) \mapsto g \star x
\end{aligned}
$$

s.t. $e \star x=x$ and $g \star(h \star x)=(g h) \star x$ for all $g, h \in G$ and $x \in X$.

Example: Let X be a cyclic finite group of order p and $G=\mathbb{Z}_{p}^{\times}$. Then

$$
\begin{array}{r}
\mathbb{Z}_{p}^{\times} \times X \longrightarrow X \\
\quad(n, x) \mapsto x^{n}
\end{array}
$$

is an action of \mathbb{Z}_{p}^{\times}over X.

Generalised DHKE

Generalised Diffie-Hellman Key Exchange

1. Alice and Bob publicly agree on an abelian group G, an action * of G on a finite set X and an element $x \in X$.
2. Alice chooses $a \in G$, computes $a \star x$ and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in G$, computes $b \star x$ and sends it to Alice. His secret key is b.
4. Alice computes $a \star(b \star x)$.
5. Bob computes $b \star(a \star x)$.

The secret common key is $(a b) \star x=(b a) \star x$.

Generalised DHKE

Generalised Diffie-Hellman Key Exchange

1. Alice and Bob publicly agree on an abelian group G, an action * of G on a finite set X and an element $x \in X$.
2. Alice chooses $a \in G$, computes $a \star x$ and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in G$, computes $b \star x$ and sends it to Alice. His secret key is b.
4. Alice computes $a \star(b \star x)$.
5. Bob computes $b \star(a \star x)$.

The secret common key is $(a b) \star x=(b a) \star x$.

- Diffie-Hellman Group Action Problem (DHGAP): Let G, X and \star as above. Given $x, y, z \in X$ such that $y=g \star x$ and $z=h \star x$ for some $g, h \in G$, find $(g h) \star x$.

Semigroups and semigroup actions

 Zurich ${ }^{\text {V2H }}$A semigroup is a set S together with a binary operation $: S \times S \rightarrow S$ that satisfies the associative property.

Semigroups and semigroup actions

A semigroup is a set S together with a binary operation $: S \times S \rightarrow S$ that satisfies the associative property.

Given S an abelian semigroup and a set X, an S-action on X (or a semigroup action of S on X) is a map

$$
\begin{aligned}
& \star: S \times X \longrightarrow X \\
& \quad(s, x) \mapsto s \star x
\end{aligned}
$$

s.t. $s \star(r \star x)=(s \cdot r) \star x$ for all $s, r \in S$ and $x \in X$

Generalised DHKE

Generalised Diffie-Hellman Key Exchange [4]

1. Alice and Bob publicly agree on an abelian semigroup S, an \underline{S}-action * on a finite set X and an element $x \in X$.

Generalised DHKE

Generalised Diffie-Hellman Key Exchange [4]

1. Alice and Bob publicly agree on an abelian semigroup S, an \underline{S}-action * on a finite set X and an element $x \in X$.
2. Alice chooses $a \in S$, computes $a \star x$ and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in S$, computes $b \star x$ and sends it to Alice. His secret key is b.
4. Alice computes $a \star(b \star x)$.
5. Bob computes $b \star(a \star x)$.

The secret common key is $(a b) \star x=(b a) \star x$.

Generalised DHKE

Generalised Diffie-Hellman Key Exchange [4]

1. Alice and Bob publicly agree on an abelian semigroup S, an \underline{S}-action * on a finite set X and an element $x \in X$.
2. Alice chooses $a \in S$, computes $a \star x$ and sends it to Bob. Her secret key is a.
3. Bob chooses $b \in S$, computes $b \star x$ and sends it to Alice. His secret key is b.
4. Alice computes $a \star(b \star x)$.
5. Bob computes $b \star(a \star x)$.

The secret common key is $(a b) \star x=(b a) \star x$.

- Diffie-Hellman Semigroup Action Problem (DHSAP): Let S, X and \star as above. Given $x, y, z \in X$ such that $y=s \star x$ and $z=r \star x$ for some $s, r \in S$, find $(g h) \star x$.

Table of Contents

University of Zurich ${ }^{\text {V2H }}$

1 Introduction to Cryptography

2 Introduction to Knot Theory

3 Knot-based Key Exchange Protocol

4 Cryptoanalysis

5 Open questions and future work

Definitions

 Zurich ${ }^{\text {V2H }}$A knot is a smooth embedding $\mathbb{S}^{1} \rightarrow \mathbb{R}^{3}$, considered up to ambient isotopy.

Definitions

A knot is a smooth embedding $\mathbb{S}^{1} \rightarrow \mathbb{R}^{3}$, considered up to ambient isotopy.

Unknot \mathcal{U}

Trefoil knot

Oriented
Figure-Eight knot

Definitions

A knot is a smooth embedding $\mathbb{S}^{1} \rightarrow \mathbb{R}^{3}$, considered up to ambient isotopy.

Unknot \mathcal{U}

Trefoil knot

Figure-Eight knot
N.B.: We will consider just oriented knots.

Connected sum

Given two oriented knots K and K^{\prime}, we can define the connected sum $K \# K^{\prime}$: cut the two knots and glue the corresponding ends (given by the orientation).

Example:

Connected sum

Given two oriented knots K and K^{\prime}, we can define the connected sum $K \# K^{\prime}$: cut the two knots and glue the corresponding ends (given by the orientation).

Example:

Definitions

Given two oriented knots K and K^{\prime}, we can define the connected sum $K \# K^{\prime}$: cut the two knots and glue the corresponding ends (given by the orientation).

Example:

Definitions

Given two oriented knots K and K^{\prime}, we can define the connected sum $K \# K^{\prime}$: cut the two knots and glue the corresponding ends (given by the orientation).

Example:

N.B.: With this operation, the set of oriented knots forms an abelian semigroup: (oKnots, $\#, \mathcal{U}$).

Definitions

Given two oriented knots K and K^{\prime}, we can define the connected sum $K \# K^{\prime}$: cut the two knots and glue the corresponding ends (given by the orientation).

Example:

- Decomposition Problem: Given a knot K, find its prime decomposition $K=K_{1} \# \cdots \# K_{n}$.

Definitions

Theorem (Reidemeister):

Two knots are the same if and only if they are related by a finite sequence of the Reidemeister moves:

Definitions

Theorem (Reidemeister):

Two knots are the same if and only if they are related by a finite sequence of the Reidemeister moves:

- Recognition Problem: Given two knot diagrams K and K^{\prime}. Do they represent the same knot?

Definitions

Theorem (Reidemeister):

Two knots are the same if and only if they are related by a finite sequence of the Reidemeister moves:

- Recognition Problem: Given two knot diagrams K and K^{\prime}. Do they represent the same knot?
\uparrow This is a hard mathematical problem. \uparrow

Invariants

 Zurich ${ }^{\text {SZH }}$To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Invariants

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Fact: All known computable invariants are not complete.

Invariants

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Fact: All known computable invariants are not complete.
We will use finite type invariants [3].

Invariants

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Fact: All known computable invariants are not complete.
We will use finite type invariants [3].
Conjecture: The set of all finite type invariants distinguish knots.

Invariants

To classify knots, one studies knot invariants, which are functions that do not change under Reidemeister moves.

Fact: All known computable invariants are not complete.
We will use finite type invariants [3].
Conjecture: The set of all finite type invariants distinguish knots.
Fact: A finite type invariant of type d can be computed in

$$
\mathcal{O}\left(c^{d}\right)
$$

where c is the number of crossings of the knot.

Finite type invariants

Fixed a $d \in \mathbb{N}$, we can choose between several distinct finite type invariants of type d.

d	0	1	2	3	4	5	6
$\# d$-Finite type invariants	1	1	2	3	6	10	19
d	7	8	9	10	11	12	
$\# d$-Finite type invariants	33	60	104	184	316	548	

Encoding knots

Zurich ${ }^{\text {VZH }}$

Consider a planar representation of a knot K.

Encoding knots

Consider a planar representation of a knot K.

- Choose a starting point and an orientation. Enumerate the edges starting from 1 , following the orientation.

Encoding knots

Consider a planar representation of a knot K.

- Choose a starting point and an orientation. Enumerate the edges starting from 1 , following the orientation.
- To each crossing, we associate a list of four edges:
(i) starting from the incoming undergoing edge;
(ii) ordering the edges counterclockwise.

Encoding knots

Consider a planar representation of a knot K.

- Choose a starting point and an orientation. Enumerate the edges starting from 1 , following the orientation.
- To each crossing, we associate a list of four edges:
(i) starting from the incoming undergoing edge;
(ii) ordering the edges counterclockwise.

$$
[X[4,1,5,2], X[2,8,3,7], X[6,4,7,3], X[8,5,1,6]]
$$

Table of Contents

Zurich ${ }^{\text {SZH }}$

1 Introduction to Cryptography

2 Introduction to Knot Theory

3 Knot-based Key Exchange Protocol

4 Cryptoanalysis

5 Open questions and future work

First idea

 Zurich ${ }^{\text {V2H }}$
Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.

First idea

Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$ and sends it to Bob. Her secret key is A.

Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$ and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$ and sends it to Alice. His secret key is B.

Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$ and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$ and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.

Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$ and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$ and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.
5. Bob computes $B \#(A \# K)=B \# A \# K$.

Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$ and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$ and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.
5. Bob computes $B \#(A \# K)=B \# A \# K$.

The secret common key is $A \# B \# K=B \# A \# K$.

Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$ and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$ and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.
5. Bob computes $B \#(A \# K)=B \# A \# K$.

The secret common key is $A \# B \# K=B \# A \# K$.
Problem I: In this case, given $A \# K$ and K, it is easy to find A.

Knot-based Key Exchange I

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$ and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$ and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.
5. Bob computes $B \#(A \# K)=B \# A \# K$.

The secret common key is $A \# B \# K=B \# A \# K$.
Problem I: In this case, given $A \# K$ and K, it is easy to find A.
We need to "complicate" $A \# K$ and $B \# K$, in order to make them unrecognisable.

Second idea

 Zurich ${ }^{\text {UZH }}$
Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.

Second idea

Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.

Second idea

Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.

Second idea

Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.

Second idea

Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.
5. Bob computes $B \#(A \# K)=B \# A \# K$.

Second idea

University of Zurich ${ }^{\text {VZ }}$

Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.
5. Bob computes $B \#(A \# K)=B \# A \# K$.

The secret common key is $A \# B \# K=B \# A \# K$.

Second idea

Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.
5. Bob computes $B \#(A \# K)=B \# A \# K$.

The secret common key is $A \# B \# K=B \# A \# K$.
Problem II: $A \# B \# K$ and $B \# A \# K$ are given in different representations.

Second idea

University of Zurich ${ }^{\text {VZH }}$

Knot-based Key Exchange II

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.
4. Alice computes $A \#(B \# K)=A \# B \# K$.
5. Bob computes $B \#(A \# K)=B \# A \# K$.

The secret common key is $A \# B \# K=B \# A \# K$.
Problem II: $A \# B \# K$ and $B \# A \# K$ are given in different representations.
We can apply an invariant to obtain the same value.

Final idea

 Zurich ${ }^{\text {V2H }}$
Knot-based Key Exchange (final version)

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.

Final idea

University of Zurich ${ }^{\text {V2H }}$

Knot-based Key Exchange (final version)

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.

University of Zurich ${ }^{\text {V2H }}$

Knot-based Key Exchange (final version)

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.

University of Zurich ${ }^{\text {V2H }}$

Knot-based Key Exchange (final version)

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.
4. Alice computes $\underline{V}(A \#(B \# K))=\underline{V}(A \# B \# K)$.

University of Zurich ${ }^{\text {V2H }}$

Knot-based Key Exchange (final version)

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.
4. Alice computes $\underline{V}(A \#(B \# K))=\underline{V}(A \# B \# K)$.
5. Bob computes $\underline{V}(B \#(A \# K))=\underline{V}(B \# A \# K)$.

University of Zurich ${ }^{\text {V2H }}$

Knot-based Key Exchange (final version)

1. Alice and Bob publicly agree on a positive integer n and a knot K with at most n crossings and a finite type invariant V.
2. Alice chooses a knot A of at most n crossings, computes $A \# K$, applies random Reidemeister moves and sends it to Bob. Her secret key is A.
3. Bob chooses a knot B of at most n crossings, computes $B \# K$, applies random Reidemeister moves and sends it to Alice. His secret key is B.
4. Alice computes $\underline{V}(A \#(B \# K))=\underline{V}(A \# B \# K)$.
5. Bob computes $\underline{V}(B \#(A \# K))=\underline{V}(B \# A \# K)$.

The secret common key is $V(A \# B \# K)=V(B \# A \# K)$.

Remarks:

$1_{\text {https://github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay }}$

Final idea

 Zurich ${ }^{\text {UZH }}$
Remarks:

- Underlying mathematical problem: Given $V(K), V(A \# K)$ and $V(B \# K)$, find $V(A \# B \# K)$.

[^0]
Final idea

University of

 Zurich ${ }^{\text {V2H }}$
Remarks:

- Underlying mathematical problem: Given $V(K), V(A \# K)$ and $V(B \# K)$, find $V(A \# B \# K)$.
Related mathematical problem: Given K and $A \# K$, find A (which is unique).
$1_{\text {https: }}$ //github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay

Final idea

University of

 Zurich ${ }^{\text {V2H }}$
Remarks:

- Underlying mathematical problem: Given $V(K), V(A \# K)$ and $V(B \# K)$, find $V(A \# B \# K)$.
Related mathematical problem: Given K and $A \# K$, find A (which is unique).
- Recall that (oKnots, $\#, \mathcal{U}$) is an abelian semigroup. Moreover, \mathcal{U} is the only invertible element.

[^1]
Final idea

Remarks:

- Underlying mathematical problem: Given $V(K), V(A \# K)$ and $\bar{V}(B \# K)$, find $V(A \# B \# K)$.
Related mathematical problem: Given K and $A \# K$, find A (which is unique).
- Recall that (oKnots, $\#, \mathcal{U}$) is an abelian semigroup. Moreover, \mathcal{U} is the only invertible element.
- To apply random Reidemeister moves, we use the program Randomeister ${ }^{1}$.

[^2]
Table of Contents

University of Zurich ${ }^{\text {SZH }}$

1 Introduction to Cryptography

2 Introduction to Knot Theory

3 Knot-based Key Exchange Protocol

4 Cryptoanalysis

5 Open questions and future work

Invariant choice

- Underliyng mathematical problem: Given $V(K), V(A \# K)$ and $V(B \# K)$, find $V(A \# B \# K)$.

Invariant choice

- Underliyng mathematical problem: Given $V(K), V(A \# K)$ and $V(B \# K)$, find $V(A \# B \# K)$.

Some invariants admit a connected-sum formula, i.e.

$$
\Phi\left(K \# K^{\prime}\right)=\Phi(K) \cdot \Phi\left(K^{\prime}\right),
$$

which could solve the problem.

Invariant choice

- Underliyng mathematical problem: Given $V(K), V(A \# K)$ and $V(B \# K)$, find $V(A \# B \# K)$.

Some invariants admit a connected-sum formula, i.e.

$$
\Phi\left(K \# K^{\prime}\right)=\Phi(K) \cdot \Phi\left(K^{\prime}\right),
$$

which could solve the problem.
N.B. Finite type invariants do not have such a formula.

Best attack

The best attack is a sort of brute force attack.

Best attack

 Zurich ${ }^{\text {UZH }}$The best attack is a sort of brute force attack.

1. Compute $A^{\prime} \# K$ for all knots A^{\prime} with at most n crossings.

Best attack

The best attack is a sort of brute force attack.

1. Compute $A^{\prime} \# K$ for all knots A^{\prime} with at most n crossings. N.B. It is not enough to just compare $A \# K$ with $A^{\prime} \# K$ for all K^{\prime}, because the Recognition Problem is hard.

Best attack

The best attack is a sort of brute force attack.

1. Compute $A^{\prime} \# K$ for all knots A^{\prime} with at most n crossings. N.B. It is not enough to just compare $A \# K$ with $A^{\prime} \# K$ for all K^{\prime}, because the Recognition Problem is hard.
2. Compute $\Phi\left(A^{\prime} \# K\right)$ and compare it to $\Phi(A \# K)$ for all A^{\prime}, where Φ is a fixed good invariant.

Best attack

The best attack is a sort of brute force attack.

1. Compute $A^{\prime} \# K$ for all knots A^{\prime} with at most n crossings. N.B. It is not enough to just compare $A \# K$ with $A^{\prime} \# K$ for all K^{\prime}, because the Recognition Problem is hard.
2. Compute $\Phi\left(A^{\prime} \# K\right)$ and compare it to $\Phi(A \# K)$ for all A^{\prime}, where Φ is a fixed good invariant.
N.B. We do not have complete invariants.

Best attack

The best attack is a sort of brute force attack.

1. Compute $A^{\prime} \# K$ for all knots A^{\prime} with at most n crossings. N.B. It is not enough to just compare $A \# K$ with $A^{\prime} \# K$ for all K^{\prime}, because the Recognition Problem is hard.
2. Compute $\Phi\left(A^{\prime} \# K\right)$ and compare it to $\Phi(A \# K)$ for all A^{\prime}, where Φ is a fixed good invariant.
N.B. We do not have complete invariants.
3. If you obtain just one correspondence, it is A.

Best attack

University of Zurich ${ }^{\text {V2H }}$

The best attack is a sort of brute force attack.

1. Compute $A^{\prime} \# K$ for all knots A^{\prime} with at most n crossings. N.B. It is not enough to just compare $A \# K$ with $A^{\prime} \# K$ for all K^{\prime}, because the Recognition Problem is hard.
2. Compute $\Phi\left(A^{\prime} \# K\right)$ and compare it to $\Phi(A \# K)$ for all A^{\prime}, where Φ is a fixed good invariant.
N.B. We do not have complete invariants.
3. If you obtain just one correspondence, it is A.

In general, you will obtain more than one correspondence, so you have to choose another invariant and restart.

Choice of parameters

Goal: choose n to reach a 128-bit security level $\leadsto>2^{128}$ operations Polynomial time knot polynomial $Z_{1}[1,5] \leadsto n^{6}$ operations

Choice of parameters

Goal: choose n to reach a 128-bit security level $\leadsto>2^{128}$ operations
Polynomial time knot polynomial $Z_{1}[1,5] \leadsto n^{6}$ operations

$$
Z_{1}\left(K_{1} \# K_{2}\right)=\Delta_{K_{2}}^{2} Z_{1}\left(K_{1}\right)+\Delta_{K_{1}}^{2} Z_{1}\left(K_{2}\right)
$$

Choice of parameters

Goal: choose n to reach a 128-bit security level $\leadsto>2^{128}$ operations
Polynomial time knot polynomial $Z_{1}[1,5] \leadsto n^{6}$ operations

$$
Z_{1}\left(K_{1} \# K_{2}\right)=\Delta_{K_{2}}^{2} Z_{1}\left(K_{1}\right)+\Delta_{K_{1}}^{2} Z_{1}\left(K_{2}\right)
$$

Choice of parameters

Goal: choose n to reach a 128 -bit security level $\leadsto>2^{128}$ operations
Polynomial time knot polynomial $Z_{1}[1,5] \leadsto n^{6}$ operations
Alexander Polynomial $\Delta_{K} \leadsto n^{3}$ operations

$$
Z_{1}\left(K_{1} \# K_{2}\right)={\Delta_{K}}_{2}^{2} Z_{1}\left(K_{1}\right)+\Delta_{K_{1}}^{2} Z_{1}\left(K_{2}\right)
$$

Choice of parameters

Goal: choose n to reach a 128-bit security level $\leadsto>2^{128}$ operations
Polynomial time knot polynomial $Z_{1}[1,5] \leadsto n^{6}$ operations
Alexander Polynomial $\Delta_{K} \leadsto n^{3}$ operations

$$
Z_{1}\left(K_{1} \# K_{2}\right)={\Delta_{K}}_{2}^{2} Z_{1}\left(K_{1}\right)+\Delta_{K_{1}}^{2} Z_{1}\left(K_{2}\right)
$$

It is enough to consider $K_{1} \# K_{2} \# K_{3} \# K_{4} \# K_{5}$ with K_{i} prime knots with 19 crossings, since
\#\{prime knots with 19 crossings $\} \approx 3 \cdot 10^{8}$

$$
\Rightarrow n=95
$$

Table of Contents

1 Introduction to Cryptography

2 Introduction to Knot Theory

3 Knot-based Key Exchange Protocol

4 Cryptoanalysis

5 Open questions and future work

Future work

Zurich ${ }^{\text {SZH }}$

Open questions:

Future work

 Zurich ${ }^{\text {SZH }}$
Open questions:

- Find a better invariant.

Future work

 Zurich ${ }^{\text {V2H }}$
Open questions:

- Find a better invariant.
- How many times do we have to apply Reidemester moves to get an equivalent knot that looks as random as possible?

Future work

Open questions:

- Find a better invariant.
- How many times do we have to apply Reidemester moves to get an equivalent knot that looks as random as possible?
- Given a string of quaterns of integers, when it represents an encoded knot?

Future work

Open questions:

- Find a better invariant.
- How many times do we have to apply Reidemester moves to get an equivalent knot that looks as random as possible?
- Given a string of quaterns of integers, when it represents an encoded knot?
- No attempt has yet been made to implement our protocol. Zurich ${ }^{\text {V2H }}$

Thanks for your attention!

(Submitted to Cryptology ePrint Archive)
[1] Dror Bar-Natan and Roland van der Veen. "A polynomial time knot polynomial". In: Proceedings of the American Mathematical Society 147.1 (2019), pp. 377-397.
[2] Whitfield Diffie and Martin Hellman. "New Directions in cryptography (1976)". In: IEEE Trans. Inform. Theory 22 (1976), pp. 644-654.
[3] Mikhail Goussarov, Michael Polyak, and Oleg Viro. "Finite-type invariants of classical and virtual knots". In: Topology 39.5 (2000), pp. 1045-1068.
[4] Gérard Maze, Chris Monico, and Joachim Rosenthal. "Public Key Cryptography based on Semigroup Actions". In: Adv. in Math. of Communications 1.4 (2007), pp. 489-507.
[5] Robert John Quarles. A New Perspective on a Polynomial Time Knot Polynomial. Louisiana State University and Agricultural \& Mechanical College, 2022.

[^0]: $1_{\text {https://github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay }}$

[^1]: $1_{\text {https://github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay }}$

[^2]: $1_{\text {https: }}$ //github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay

