

POLITECNICO DI TORINO

Dipartimento di Scienze Matematiche G.L. Lagrange

An overview about elliptic curve cryptosystems and pairings

Dutto Simone

Ph.D. Student in Pure and Applied Mathematics Università degli Studi di Torino & Politecnico di Torino

De Cifris AugustæTaurinorum - 18 Aprile 2019

Introduction Elliptic-Curve Cryptography

Elliptic-Curve Cryptography (ECC):

- was suggested in 1985 by Koblitz [1] and Miller [2];
- has same security level with smaller parameters than those required in Finite-Field Cryptography (e.g. DSA) and Integer-Factorization Cryptography (e.g. RSA).

Pairing-Based Cryptography

Pairing-Based Cryptography (PBC):

- in the 1990s was exploited to break ECC [3];
- enables many elegant solutions to cryptographic problems and allows innovative protocols (three-party one-round key agreement [4], identity-base encryption [5], short signatures [6], ...).

Diffie-Hellman Problem

ECC and PBC are approaches to Public-Key Cryptography (PKC) whose security is based on the:

Diffie-Hellman Problem (DHP) [7]

Given the cyclic group $G = \langle g \rangle$ and the elements $g^a, g^b \in G$, what is the value of g^{ab} ?

This problem is assumed to be hard (Diffie-Hellman assumption) and the most efficient way to solve it is to solve the Discrete Logarithm Problem (DLP).

Elliptic-Curve Cryptography Elliptic Curves

Elliptic Curve

An elliptic curve E over a field \Bbbk (written E/\Bbbk) is a non-singular plane cubic defined by an (affine) equation f(x, y) = 0 with coefficients in \Bbbk .

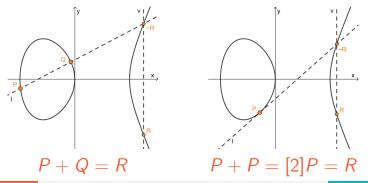
If $char(\Bbbk) \notin \{2,3\}$, by an appropriate change of variables, the curve equation can be written in its *short Weierstrass form*:

$$y^2 = x^3 + ax + b$$
 (*a*, *b* \in k).

Group Definition

The group $E(\mathbb{F}_q)$ consists of all the points of the curve with coordinates (x, y) over the algebraic closure of the finite field \mathbb{F}_q , in addition to the *point at infinity* \mathcal{O} .

The group law is the operation defined as follows:



An overview about elliptic curve cryptosystems and pairings

Explicit Group Law

If $P = (x_P, y_P)$, $Q = (x_Q, y_Q)$ and R = P + Q, then the line joining them is $I : y = \lambda x + \nu$ where:

$$\lambda = \frac{y_Q - y_P}{x_Q - x_P}$$
 and $\nu = \frac{y_Q x_P - y_P x_Q}{x_P - x_Q}$

Thus, $x_R = x_{-R}$ is obtained from the equation of $I \cap E$: $(x - x_P)(x - x_Q)(x - x_R) = x^3 + ax + b - (\lambda x + \nu)^2$

as the coefficient of x^2 while $y_R = -y_{-R}$ from the line *I*, so that:

$$x_R = \lambda^2 - x_P - x_Q$$
 and $y_R = -(\lambda x_R + \nu)$.

If $P = (x_P, y_P)$ and R = P + P = [2]P, then the derivative in x of the equation of E is needed:

$$\frac{d(y^2)}{dy}\frac{dy}{dx} = \frac{d(x^3 + ax + b)}{dx} \Rightarrow \frac{dy}{dx} = \frac{3x^2 + a}{2y}$$

Thus, the tangent to *E* in *P* is $I : y = \lambda x + \nu$ where:

$$\lambda = rac{dy}{dx}(P) = rac{3x_P^2 + a}{2y_P} \quad ext{and} \quad
u = y_P - \lambda x_P \,.$$

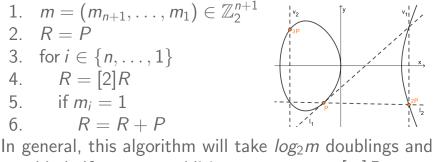
As before, $x_R = x_{-R}$ is obtained from the equation of $I \cap E$ as the coefficient of x^2 (now with double x_P), while $y_R = -y_{-R}$ from the line I, so that:

$$x_R = \lambda^2 - 2x_P$$
 and $y_R = -(\lambda x_R + \nu)$.

Multiplication

Multiply points by integers is crucial in ECC, as it is the one-way operation that buries the DLP in $E(\mathbb{F}_q)$.

An efficient way to compute R = [m]P is the *double-and-add* algorithm:



roughly half as many additions to compute [m]P.

Speeding Up Computations

Computations in ECC are more complicated than those in other DLP based protocols (e.g., with \mathbb{F}_q^*).

The more abstract nature of elliptic curve groups can be a benefit: best available attacks remain generic.

In order to speed up computations:

- projective coordinates are preferred to affine ones, since no inversion in F_q is required;
- if some conditions hold, some equation forms different from Weierstrass can be advantageous (e.g., *Jacobi-quartic* [8]).

Structure of $E(\mathbb{F}_q)$

Proposition [9](5.78)

 $E(\mathbb{F}_q)$ is either a cyclic group or isomorphic to a product of two cyclic groups $\mathbb{Z}_{n_1} \times \mathbb{Z}_{n_2}$ with $n_1|n_2$.

In ECC, it is preferred the former case, or at least for n_1 to be very small.

In addition, the group order $\#E(\mathbb{F}_q)$ must be as close to prime as possible. This is because the complexity of the DLP is dependent on the size of the largest prime subgroup of $E(\mathbb{F}_q)$.

Point Counting

Theorem (Hasse Bound) [10]

$$\#E(\mathbb{F}_q) = q + 1 - t$$
, where $|t| \leq 2\sqrt{q}$.

t is called the *trace of Frobenius*, because of the *Frobenius endomorphism* $\pi : E \to E, (x, y) \mapsto (x^q, y^q)$ and its characteristic polynomial $\pi^2 - [t] \circ \pi + [q] = 0$.

Theorem (Deuring) [11]

If q is prime, then $\forall N \in [q+1-2\sqrt{q}, q+1+2\sqrt{q}]$ $\exists E \mid N = \#E(\mathbb{F}_q).$ Shoof's polynomial-time algorithm $(O(\log^{8} q))$ for t [12]:

• solve $(x^{q^2}, y^{q^2}) - [t_l](x^q, y^q) + [q_l](x, y) = \mathcal{O}$ for $t_l \equiv t \pmod{l}$ where $q_l \equiv q \pmod{l}$ and $(x, y) \in \{P \in E \mid [l]P = \mathcal{O}\}$ (*l-torsion group*).

Unfortunately, *I*-torsion points cannot be explicitly used, since it is unknown where they are defined (it depends on the unknown group order).

However, the equation can be restricted to $R_l = \mathbb{F}_q[x, y]/\langle \psi_l(x), y^2 - (x^3 + ax + b) \rangle$ where $\psi_l(x)$ is a *division polynomial* (whose roots are the *x*-coordinates of the *l*-torsion points) [13];

• when $\prod_{l} l \ge 4\sqrt{q}$, *t* can be found through CRT.

Example [14](2.2.10)

$$\begin{split} E/\mathbb{F}_{13} : y^2 &= x^3 + 2x + 1 \\ \#E(\mathbb{F}_{13}) &= q + 1 - t \text{, where } |t| \leq 2\sqrt{13} \cong 7 \\ \text{Schoof: } \prod_l l \geq 4\sqrt{q} \cong 15 \Rightarrow l \in \{3,5\}. \\ \bullet \ l &= 3 : \psi_3(x) = 3x^4 + 12x^2 + 12x + 9, q_3 = 1. \\ \text{After computing } (x^{169}, y^{169}), (x^{13}, y^{13}) \text{ and } [q_3](x, y) \\ \text{in } R_3 &= \mathbb{F}_q[x, y]/\langle \psi_3(x), y^2 - (x^3 + 2x + 1) \rangle \text{ and} \\ \text{testing incremental } t_3 \text{ until the Frobenius polynomial} \\ \text{in } R_3 \text{ is satisfied, } t_3 = 0 \text{ is obtained.} \\ \bullet \ l &= 5 : \text{ analogously, } t_5 = 1 \text{ is obtained.} \end{split}$$

The CRT with $t \equiv 0 \pmod{3}$, $t \equiv 1 \pmod{5}$ and $|t| \leq 7$ gives t = 6 so that $\#E(\mathbb{F}_{13}) = 13 + 1 - 6 = 8$.

 $E(\mathbb{F}_{13}) = \{\mathcal{O}, (0,1), (0,12), (1,2), (1,11), (2,0), (8,3), (8,10)\}$ and one of its generators is (0, 1). So if A and B want to share a secret, they can take P = (0, 1) as basis and:

- A chooses a = 5 and sends to B $R = [a]P = [5](0,1) = [(101)_2](0,1)$: after initializing R = P = (0,1), $a_2 = 0 \Rightarrow R = [2]R = (1,11)$, $a_1 = 1 \Rightarrow R = [2]R + P = (2,0) + (0,1) = (8,3)$;
- *B* does the same with b = 3 and sends [b]P = [3](0,1) = (8,10) to *A*;
- A can evaluate [a]([b]P) = [5](8, 10) = (0, 12);
- B can evaluate [b]([a]P) = [3](8,3) = (0,12).

Pairings-Based Cryptography Divisors

Divisors

A divisor on an elliptic curve E is $D = \sum_{P \in F} n_P(P)$, where all but finitely many $n_P \in \mathbb{Z}$ are zero.

The set of all divisors of E is Div(E) and is a group with natural addition and identity $0 = \sum_{P \in F} 0(P)$.

The degree of a divisor is $Deg(D) = \sum_{P \in F} n_P$ and its support is supp $(D) = \{P \in E \mid n_P \neq 0\}$.

The divisor of a function f is $(f) = \sum_{P \in F} \operatorname{ord}_P(f)(P)$. Deg((f)) = 0, (fg) = (f) + (g), (f) = 0 iff f constant.

Divisor Class Group

Divisors with degree zero form a subgroup written as $\text{Div}^{0}(E) \subset \text{Div}(E)$.

A *principal* divisor is D for which $\exists f \mid D = (f)$ and they form the subgroup $Prin(E) \subset Div^0(E) \subset Div(E)$.

Theorem [15](IX.2)

 $D = \sum_{P} n_{P}(P) \in \text{Div}^{0}(E)$ is principal iff $\sum_{P} [n_{P}]P = \mathcal{O}$.

 $D_1, D_2 \in \text{Div}(E)$ are called *equivalent* $(D_1 \sim D_2)$ if $\exists f \mid D_1 = D_2 + (f)$ (i.e., $D_1 - D_2 \in \text{Prin}(E)$).

The divisor class group, or Picard group, of E is

$$\operatorname{Pic}^{0}(E) = \operatorname{Div}^{0}(E)/\operatorname{Prin}(E)$$
.

An overview about elliptic curve cryptosystems and pairings

The *Riemann-Roch theorem* [13](II.5.5) implies:

Proposition [13](III.3.4)

- For any divisor D ∈ Div⁰(E) there exists a unique point P ∈ E satisfying D ~ (P) − (O).
- The map $\sigma : \operatorname{Div}^0(E) \to E, D \mapsto P$ is surjective.

•
$$\sigma(D_1) = \sigma(D_2)$$
 iff $D_1 \sim D_2$.

Thus, σ induces an isomorphism between Pic⁰(*E*) and *E*.

In PBC, elliptic curves are preferred because of this property that makes their computational speed unrivaled.

Weil Reciprocity

The evaluation of a function f at $D = \sum_{P \in E} n_P(P)$, where (f) and D have disjoint supports, is

$$f(D) = \prod_{P \in E} f(P)^{n_P}$$
.

If $P \in \text{supp}((f)) \cap \text{supp}(D)$, then P is a zero or pole of f and $f(P)^{n_P}$ would be 0 or ∞ .

Theorem (Weil Reciprocity) [15](IX.3)

If f, g are non-zero functions such that (f) and (g) have disjoint supports, then f((g)) = g((f)).

Pairings

Pairing (in cryptography)

A pairing is a map $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ between finite abelian groups $\mathbb{G}_1, \mathbb{G}_2, \mathbb{G}_T$, which is:

• *bilinear*, i.e., $\forall P, P' \in \mathbb{G}_1, Q, Q' \in \mathbb{G}_2$

$$e(P + P', Q) = e(P, Q) \cdot e(P', Q),$$

 $e(P, Q + Q') = e(P, Q) \cdot e(P, Q');$

- non-degenerate, i.e., $\forall P \in \mathbb{G}_1 \exists Q \in \mathbb{G}_2 | e(P, Q) \neq 1$ and $\forall Q \in \mathbb{G}_2 \exists P \in \mathbb{G}_1 | e(P, Q) \neq 1$;
- efficiently computable and hardly invertible.

In particular, $e([a]P, [b]Q) = e(P, Q)^{ab}$ (DLP).

Dutto Simone

An overview about elliptic curve cryptosystems and pairings

r-torsion

For the only known admissible pairings (Weil and Tate), P and Q must come from disjoint cyclic subgroups of same prime order r (because of the *Weil reciprocity*).

Thus, an important group is the *r*-torsion of E/\Bbbk :

$$\boldsymbol{E}[\boldsymbol{r}] = \{ \boldsymbol{P} \in \boldsymbol{E} \mid [\boldsymbol{r}] \boldsymbol{P} = \boldsymbol{\mathcal{O}} \}.$$

Theorem [9](13.13)

If char(
$$\Bbbk$$
) = p with $p = 0$ or $p \nmid r$, then $E[r] \cong \mathbb{Z}_r \times \mathbb{Z}_r$.

 $\#E[r] = r^2$ and, since \mathcal{O} belongs to all its subgroups, E[r] consists of r + 1 cyclic subgroups of order r.

Embedding degree

When $E(\mathbb{F}_q)$ contains only one subgroup of order r, \mathbb{F}_q can be extended to \mathbb{F}_{q^k} such that $E(\mathbb{F}_{q^k})$ contains at least one other subgroup of order r.

The integer k > 1 is called *embedding degree*, and can be found as the smallest positive integer such that:

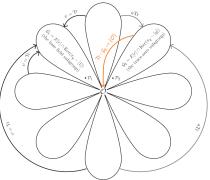
- $r | (q^k 1);$
- \mathbb{F}_{q^k} contains all the *r*-roots of unity in $\overline{\mathbb{F}}_q$;
- $E[r] \subset E(\mathbb{F}_{q^k})$ [13](XI.6.2).

The focus will be on $r | \#E(\mathbb{F}_q)$ but $r^2 \nmid \#E(\mathbb{F}_q)$, so that the *r*-torsion subgroup in $E(\mathbb{F}_q)$ is unique and \mathbb{F}_{q^k} is the smallest extension of \mathbb{F}_q that contains all E[r].

Characterization of E[r]

 $E[r] \cap E(\mathbb{F}_q)$ is called the *base-field* subgroup \mathcal{G}_1 . π acts trivially on \mathcal{G}_1 , so that it can be defined as $\mathcal{G}_1 = E[r] \cap \operatorname{Ker}(\pi - [1]).$

The other eigenvalue of π is q and it defines $\mathcal{G}_2 = E[r] \cap \text{Ker}(\pi - [q]),$ called the *trace-zero* subgroup because $\forall P \in \mathcal{G}_2$ $\text{Tr}(P) = \sum_{i=0}^{k-1} \pi^i(P) = \mathcal{O}.$



The *trace* sends all other subgroups in \mathcal{G}_1 , while they are mapped to \mathcal{G}_2 by the *anti-trace* $\operatorname{aTr}(P) = [k]P - \operatorname{Tr}(P)$.

Supersingular Curves

Supersingular curve

An elliptic curve E is called *supersingular* if $\#E(\mathbb{F}_q) = q + 1$.

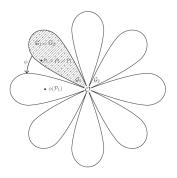
For supersingular curves only, there exists a non- \mathbb{F}_q -rational map ϕ that takes points in $E(\mathbb{F}_q)$ to points in $E(\mathbb{F}_{q^k})$, called *distortion map*. In particular, ϕ maps out of \mathcal{G}_1 and \mathcal{G}_2 in different subgroups of E[r].

Pairing Types

- Usually, $\mathbb{G}_T = \mathbb{F}_{q^k}^*$, $\mathbb{G}_1 = \mathcal{G}_1$ and the choice of \mathbb{G}_2 among the subgroups of E[r] divides pairings in 4 types [16].
- The main factors affecting the classification are:
- the ability to hash or sample elements of \mathbb{G}_2 ;
- the existence of a ψ : G₂ → G₁ (that makes security proofs work);
- computation efficiency.

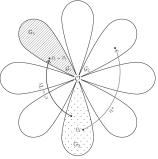
1. *E* supersingular, $\mathbb{G}_2 = \mathcal{G}_1$ and $e(P, Q) = \hat{e}(P, \phi(Q))$ $(\hat{e} \text{ Weil or Tate pairing}).$ **Pros**: no hashing problems, trivial ψ .

Cons: supersingularity affects computation efficiency.



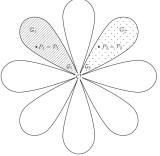
An overview about elliptic curve cryptosystems and pairings

 E supersingular, G₂ = G₁ and e(P, Q) = ê(P, φ(Q)) (ê Weil or Tate pairing). Pros: no hashing problems, trivial ψ. Cons: supersingularity affects computation efficiency.
 E ordinary, G₂ ⊂ E[r], G₂ ≠ G₁, G₂. Pros: ψ = Tr, aTr : G₂ → G₂ helps in computation. Cons: no efficient way to hash.



An overview about elliptic curve cryptosystems and pairings

1. *E* supersingular, $\mathbb{G}_2 = \mathcal{G}_1$ and $e(P, Q) = \hat{e}(P, \phi(Q))$ $(\hat{e} \text{ Weil or Tate pairing}).$ **Pros:** no hashing problems, trivial ψ . Cons: supersingularity affects computation efficiency. 2. *E* ordinary, $\mathbb{G}_2 \subset E[r], \mathbb{G}_2 \neq \mathcal{G}_1, \mathcal{G}_2$. **Pros**: $\psi = \text{Tr}$, aTr : $\mathbb{G}_2 \to \mathcal{G}_2$ helps in computation. Cons: no efficient way to hash. **3**. *E* ordinary, $\mathbb{G}_2 = \mathcal{G}_2$. Pros: good hash and computation. Cons: $\psi : \mathcal{G}_2 \to \mathcal{G}_1$ not efficient.



1. *E* supersingular, $\mathbb{G}_2 = \mathcal{G}_1$ and $e(P, Q) = \hat{e}(P, \phi(Q))$ $(\hat{e} \text{ Weil or Tate pairing}).$ **Pros**: no hashing problems, trivial ψ . Cons: supersingularity affects computation efficiency. 2. *E* ordinary, $\mathbb{G}_2 \subset E[r], \mathbb{G}_2 \neq \mathcal{G}_1, \mathcal{G}_2$. **Pros**: $\psi = \text{Tr}$, aTr : $\mathbb{G}_2 \to \mathcal{G}_2$ helps in computation. Cons: no efficient way to hash. **3**. *E* ordinary, $\mathbb{G}_2 = \mathcal{G}_2$. Pros: good hash and computation. Cons: $\psi : \mathcal{G}_2 \to \mathcal{G}_1$ not efficient. 4. *E* ordinary, $\mathbb{G}_2 = E[r]$. **Pros**: ψ = Tr, efficient computation. Cons: no efficient way to hash (\mathbb{G}_2 is not cyclic and of order r^2).

Weil and Tate pairings

Both pairings exploit that, from Th.[15](IX.2), for any $m \in \mathbb{Z}$, $P \in E$, there exists a function $f_{m,P}$ with divisor:

$$(f_{m,P}) = m(P) - ([m]P) - (m-1)(O)$$

where, for $m = 0, f_{0,P} = 1$ and $(f_{0,P}) = 0$.

If $P \in E[r]$ then $(f_{r,P}) = r(P) - r(\mathcal{O})$.

 $(f_{m+1,P}) - (f_{m,P}) = (P) + ([m]P) - ([m+1]P) - (\mathcal{O})$ which is the divisor of $I_{[m]P,P}/v_{[m+1]P}$ (lines used in the points addition), so that:

$$f_{m+1,P} = f_{m,P} \frac{I_{[m]P,P}}{V_{[m+1]P}}$$

Weil Pairing [17]

Let $P, Q \in E(\mathbb{F}_{q^k})[r]$ and $D_P, D_Q \in \text{Div}^0(E)$ with disjoint supports such that $D_P \sim (P) - (\mathcal{O})$ and $D_Q \sim (Q) - (\mathcal{O})$. There exist function f and g such that $(f) = rD_P$ and $(g) = rD_Q$, and the Weil pairing is:

$$\mathbf{W}_{\mathbf{r}}: E(\mathbb{F}_{q^k})[\mathbf{r}] \times E(\mathbb{F}_{q^k})[\mathbf{r}] \to \mu_{\mathbf{r}}, \ (\mathbf{P}, \mathbf{Q}) \mapsto rac{f(D_{\mathbf{Q}})}{g(D_{\mathbf{P}})}.$$

 $f_{r,P}$ and $f_{r,Q}$ can not be used as f and g because both $(f_{r,P})$ and $(f_{r,Q})$ contains \mathcal{O} , but if $R, S \in E(\mathbb{F}_{q^k})$ then $D_P = (P+R) - (R)$ and $D_Q = (Q+S) - (S)$ can be considered, so that $f = f_{r,P}/(I_{P,R}/v_{P+R})^r$ and $g = f_{r,Q}/(I_{Q,S}/v_{Q+S})^r$ have $(f) = rD_P$ and $(g) = rD_Q$.

Given the coset
$$rE(\mathbb{F}_{q^k}) = \{[r]P \mid P \in E(\mathbb{F}_{q^k})\}, E(\mathbb{F}_{q^k})[r]$$
 represents $E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k}).$

Tate Pairing [18]

Let $P \in E(\mathbb{F}_{q^k})$, $f | (f) = r(P) - r(\mathcal{O})$, $Q \in E(\mathbb{F}_{q^k})$ representative of a class in $E(\mathbb{F}_{q^k})/rE(\mathbb{F}_{q^k})$ and $D_Q \in \text{Div}^0(E) | D_Q \sim (Q) - (\mathcal{O})$ whose support is disjoint to that of (f). The *Tate pairing* is:

$$\begin{aligned} t_r : E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k}) / rE(\mathbb{F}_{q^k}) \to \mathbb{F}_{q^k}^* / (\mathbb{F}_{q^k}^*)^r , \\ (P, Q) \mapsto f(D_Q) . \end{aligned}$$

f can be $f_{r,P}$ while D_Q can be taken as (Q+R) - (R), where $R \in E(\mathbb{F}_{q^k})$.

Outputs of Tate pairing lie in equivalence classes, while unique values are preferred. Thus an update is required.

Reduced Tate Pairing

Given P, f, Q, D_Q as before, the *reduced Tate pairing* is:

$$\frac{\mathsf{T}_r: E(\mathbb{F}_{q^k})[r] \times E(\mathbb{F}_{q^k}) / rE(\mathbb{F}_{q^k}) \to \mu_r, }{(P,Q) \mapsto t_r(P,Q)^{\#\mathbb{F}_{q^k}/r} = f(D_Q)^{(q^k-1)/r} }$$

It is possible to consider $P \in G_1$ and $Q \in G_2$ (Type 3 pairing), since every value in μ_r will still be reached.

Miller's Algorithm

In order to compute $w_r(P, Q)$ and $T_r(P, Q)$, the evaluation of $f_{r,P}(D_Q)$ is required.

The difference between $(f_{r,P}) = r(P) - r(\mathcal{O})$ and $(f_{r-1,P}) = (r-1)(P) - ([r-1]P) - (r-2)(\mathcal{O})$ is $(P) + ([r-1]P) - 2(\mathcal{O})$, which corresponds to a multiplication by $v_{[r-1]P}$, so that $f_{r,P} = v_{[r-1]P}f_{r-1,P}$ and:

$$f_{r,P} = v_{[r-1]P} \prod_{i=1}^{r-1} \frac{I_{[i]P,P}}{v_{[i+1]P}} = I_{[r-1]P,P} \prod_{i=1}^{r-2} \frac{I_{[i]P,P}}{v_{[i+1]P}}$$

Thus, this method has exponential complexity O(r) and, for huge r, it is unfeasible.

Dutto Simone

An overview about elliptic curve cryptosystems and pairings

Miller's algorithm [19] makes pairings practical.

The idea is to observe that the difference between $(f_{2m,P}) = 2m(P) - ([2m]P) - (2m-1)(\mathcal{O})$ and $(f_{m,P}^2) = 2m(P) - 2([m]P) - 2(m-1)(\mathcal{O})$ is $2([m]P) - ([2m]P) - (\mathcal{O})$, which corresponds to the quotient of $I_{[m]P,[m]P}$ and $v_{[2m]P}$, so that:

$$f_{2m,P} = f_{m,P}^2 \cdot rac{I_{[m]P,[m]P}}{v_{[2m]P}}$$
 .

This gives rise to a *double-and-add* algorithm with polynomial complexity $O(\log r)$.

Finally, since $f_{m,P}$ becomes too large to store and only $f_{r,P}(D_Q)$ is required, at each step $f_{m,P}(D_Q)$ is evaluated.

Pairing-Friendly Curves

Solving the DLP in \mathbb{G}_1 , \mathbb{G}_2 or \mathbb{G}_T can broke the system. Thus, the attack complexity is the minimum between the size of r (for \mathbb{G}_1 , \mathbb{G}_2) and that of q^k (for \mathbb{G}_T) and can be described by $k \cdot \rho = k \cdot \frac{\log q}{\log r}$. Since $r \mid \#E(\mathbb{F}_q), \rho \geq 1$.

In addition, the pairing must be efficient, which means that arithmetic in \mathbb{F}_{q^k} must be fast, i.e., k must be small.

To sum up, a curve is *pairing-friendly* [20] if:

- there is a prime $r \ge \sqrt{q}$ (i.e. $\rho \le 2$);
- the embedding degree k is less than $\log_2(r)/8$.

Example [14](5.3.1)

$$E/\mathbb{F}_q: y^2 = x^3 + 21x + 15$$
 with $q = 47$ and
 $\#E(\mathbb{F}_q) = 51 = 3 \cdot 17$, so $r = 17$ and $\rho \cong 1.36$. Since
 $17 \mid (47^4 - 1), k = 4$ and $\mathbb{F}_{q^4} = \mathbb{F}_q(u)$ where
 $u^4 - 4u^2 + 5 = 0$.

P = (45, 23) has order 17 in $E(\mathbb{F}_q)$, thus $P \in \mathcal{G}_1$. $Q \in \mathcal{G}_2$ can be found from any $R \in E(\mathbb{F}_{q^4})$ by multiplying it for $h = 3^3 \cdot 5^4$ (since $\#E(\mathbb{F}_{q^4}) = 3^3 \cdot 5^4 \cdot 17^2$), so that $[h]R \in E[17]$ and $a \operatorname{Tr}([h]R) \in \mathcal{G}_2$. For example, $Q = (31u^2 + 29, 35u^3 + 11u) \in \mathcal{G}_2$. Chosen $D_P = ([2]P) - (P)$ and $D_Q = ([2]Q) - (Q)$, T_r requires only $f_{r,P}(D_Q)$ while w_r requires also $f_{r,Q}(D_P)$. Miller: $r = (1001)_2$ and the steps are:

r _i	R	l/v	$I(D_Q)/v(D_Q)$	$f_{r,P}(D_Q)$
1	(45,23)			1
0	(12,16)	$\frac{y+33x+43}{x+35}$	$41u^3 + 32u^2 + 2u + 21$	$41u^3 + 32u^2 + 2u + 21$
0	(27,14)	$\frac{y+2x+7}{x+20}$	$4u^3 + 5u^2 + 28u + 17$	$22u^3 + 27u^2 + 30u + 33$
0	(18,31)	$\frac{y+42x+27}{x+29}$	$6u^3 + 13u^2 + 33u + 28$	$36u^3 + 2u^2 + 21u + 37$
1	(45,24)	$\frac{y+9x+42}{x+2}$	$46u^3 + 45u^2 + u + 20$	$10u^3 + 21u^2 + 40u + 25$
	\mathcal{O}	<i>x</i> + 2	$6u^2 + 43$	$17u^3 + 6u^2 + 10u + 22$

 $T_r(P, Q) = f_{r,P}(D_Q)^{(q^k-1)/r} = 33u^3 + 43u^2 + 45u + 39,$ for $w_r(P, Q)$ the calculations are analogous.

Dutto Simone

An overview about elliptic curve cryptosystems and pairings

Joux's protocol [4]

If A, B and C want to share a secret, they can choose a common $P \in \mathcal{G}_1$ for a pairing of Type 1 e(P, P) and three personal elements $a, b, c \in \mathbb{F}_a^*$, then:

- A sends [a]P to B and C;
- B sends [b]P to A and C;
- C sends [c]P to A and B;
- A evaluates $e([b]P, [c]P)^a$;
- B evaluates $e([a]P, [c]P)^b$;
- C evaluates $e([a]P, [b]P)^c$.

Now they share the secret $K = e(P, P)^{abc}$.

The future menace

Quantum computers, thanks to the Shor's algorithm, are theoretically capable of break DLP-based cryptography.

Bibliography I

- N. Koblitz, "Elliptic curve cryptosystems," *Mathematics of Computation*, vol. 48, no. 177, 1987.
- [2] V. S. Miller, "Use of elliptic curves in cryptography," in Advances in Cryptology -CRYPTO '85 Proceedings, 1986.
- [3] A. Menezes, S. Vanstone, and T. Okamoto, "Reducing elliptic curve logarithms to logarithms in a finite field," in *Proceedings of the Twenty-third Annual ACM Symposium* on *Theory of Computing*, 1991.
- [4] A. Joux, "A one round protocol for tripartite diffie-hellman," in Algorithmic Number Theory, 2000.
- [5] D. Boneh and M. K. Franklin, "Identity-based encryption from the weil pairing," in Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology, 2001.
- [6] D. Boneh, B. Lynn, and H. Shacham, "Short signatures from the weil pairing," in Advances in Cryptology - ASIACRYPT 2001, 2001.
- [7] W. Diffie and M. Hellman, "New directions in cryptography," IEEE Trans. on Information Theory, vol. 22, no. 6, 1976.

Bibliography II

- [8] O. Billet and M. Joye, "The jacobi model of an elliptic curve and side-channel analysis," in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 2003.
- [9] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren, The Handbook of Elliptic and Hyperelliptic Curve Cryptography, Second Edition. Chapman & Hall/CRC, 2012.
- [10] H. Hasse, "Zur theorie der abstrakten elliptischen funktionenkörper I, II & III," Journal für die reine und angewandte Mathematik, vol. 175, 1936.
- [11] M. Deuring, "Die typen der multiplikatorenringe elliptischer funktionenkörper," Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 14, no. 1, 1941.
- [12] R. Schoof, "Elliptic curves over finite fields and the computation of square roots mod p," *Mathematics of Computation*, vol. 44, no. 170, 1985.
- [13] J. Silverman, *The Arithmetic of Elliptic Curves*. Springer, 2009.
- [14] C. Costello, "Pairings for beginners," 2012.

Bibliography III

- [15] I. Blake, G. Seroussi, and N. Smart, Advances in Elliptic Curve Cryptography (London Mathematical Society Lecture Note Series). Cambridge University Press, 2005.
- [16] S. D. Galbraith, K. G. Paterson, and N. P. Smart, "Pairings for cryptographers," Discrete Applied Mathematics, vol. 156, no. 16, 2008.
- [17] A. Weil, "Sur les fonctions algébriques à corps de constantes fini," Les Comptes rendus de l'Académie des sciences, vol. 210, 1940.
- [18] J. Tate, "WC-groups over p-adic fields," in Séminaire Bourbaki: années 1956/57 -1957/58, exposés 137-168, 1958.
- [19] V. S. Miller, "The weil pairing, and its efficient calculation," *Journal of Cryptology*, vol. 17, no. 4, 2004.
- [20] D. Freeman, M. Scott, and E. Teske, "A taxonomy of pairing-friendly elliptic curves," *Journal of Cryptology*, vol. 23, no. 2, 2010.