

An overview about elliptic curve cryptosystems and pairings

Dutto Simone

Ph.D. Student in Pure and Applied Mathematics Università degli Studi di Torino \& Politecnico di Torino

De Cifris AugustæTaurinorum - 18 Aprile 2019

Introduction

Elliptic-Curve Cryptography

Elliptic-Curve Cryptography (ECC):

- was suggested in 1985 by Koblitz [1] and Miller [2];
- has same security level with smaller parameters than those required in Finite-Field Cryptography (e.g. DSA) and Integer-Factorization Cryptography (e.g. RSA).

Pairing-Based Cryptography

Pairing-Based Cryptography (PBC):

- in the 1990s was exploited to break ECC [3];
- enables many elegant solutions to cryptographic problems and allows innovative protocols (three-party one-round key agreement [4], identity-base encryption [5], short signatures [6], ...).

Diffie-Hellman Problem

ECC and PBC are approaches to Public-Key
Cryptography (PKC) whose security is based on the:

Diffie-Hellman Problem (DHP) [7]

Given the cyclic group $G=\langle g\rangle$ and the elements $g^{a}, g^{b} \in G$, what is the value of $g^{a b}$?

This problem is assumed to be hard (Diffie-Hellman assumption) and the most efficient way to solve it is to solve the Discrete Logarithm Problem (DLP).

Elliptic-Curve Cryptography

Elliptic Curves

Elliptic Curve

An elliptic curve E over a field \mathbb{k} (written E / \mathbb{k}) is a non-singular plane cubic defined by an (affine) equation $f(x, y)=0$ with coefficients in \mathbb{k}.

If $\operatorname{char}(\mathbb{k}) \notin\{2,3\}$, by an appropriate change of variables, the curve equation can be written in its short Weierstrass form:

$$
y^{2}=x^{3}+a x+b \quad(a, b \in \mathbb{k})
$$

Group Definition

The group $E\left(\mathbb{F}_{q}\right)$ consists of all the points of the curve with coordinates (x, y) over the algebraic closure of the finite field \mathbb{F}_{q}, in addition to the point at infinity \mathcal{O}.

The group law is the operation defined as follows:

$P+Q=R$

$P+P=[2] P=R$

Explicit Group Law

If $P=\left(x_{P}, y_{P}\right), Q=\left(x_{Q}, y_{Q}\right)$ and $R=P+Q$, then the line joining them is $I: y=\lambda x+\nu$ where:

$$
\lambda=\frac{y_{Q}-y_{P}}{x_{Q}-x_{P}} \quad \text { and } \quad \nu=\frac{y_{Q} x_{P}-y_{P} x_{Q}}{x_{P}-x_{Q}} .
$$

Thus, $x_{R}=x_{-R}$ is obtained from the equation of $I \cap E$:

$$
\left(x-x_{P}\right)\left(x-x_{Q}\right)\left(x-x_{R}\right)=x^{3}+a x+b-(\lambda x+\nu)^{2}
$$

as the coefficient of x^{2} while $y_{R}=-y_{-R}$ from the line I, so that:

$$
x_{R}=\lambda^{2}-x_{P}-x_{Q} \quad \text { and } \quad y_{R}=-\left(\lambda x_{R}+\nu\right) .
$$

If $P=\left(x_{P}, y_{P}\right)$ and $R=P+P=[2] P$, then the derivative in x of the equation of E is needed:

$$
\frac{d\left(y^{2}\right)}{d y} \frac{d y}{d x}=\frac{d\left(x^{3}+a x+b\right)}{d x} \Rightarrow \frac{d y}{d x}=\frac{3 x^{2}+a}{2 y} .
$$

Thus, the tangent to E in P is $I: y=\lambda x+\nu$ where:

$$
\lambda=\frac{d y}{d x}(P)=\frac{3 x_{P}^{2}+a}{2 y_{P}} \quad \text { and } \quad \nu=y_{P}-\lambda x_{P}
$$

As before, $x_{R}=x_{-R}$ is obtained from the equation of $I \cap E$ as the coefficient of x^{2} (now with double x_{P}), while $y_{R}=-y_{-R}$ from the line I, so that:

$$
x_{R}=\lambda^{2}-2 x_{P} \quad \text { and } \quad y_{R}=-\left(\lambda x_{R}+\nu\right)
$$

Multiplication

Multiply points by integers is crucial in ECC, as it is the one-way operation that buries the DLP in $E\left(\mathbb{F}_{q}\right)$.
An efficient way to compute $R=[m] P$ is the double-and-add algorithm:

1. $m=\left(m_{n+1}, \ldots, m_{1}\right) \in \mathbb{Z}_{2}^{n+1}$
2. $R=P$
3. for $i \in\{n, \ldots, 1\}$
4. $R=[2] R$
5. if $m_{i}=1$
6. $\quad R=R+P$

In general, this algorithm will take $\log _{2} m$ doublings and roughly half as many additions to compute $[m] P$.

Speeding Up Computations

Computations in ECC are more complicated than those in other DLP based protocols (e.g., with \mathbb{F}_{q}^{*}).
The more abstract nature of elliptic curve groups can be a benefit: best available attacks remain generic.
In order to speed up computations:

- projective coordinates are preferred to affine ones, since no inversion in \mathbb{F}_{q} is required;
- if some conditions hold, some equation forms different from Weierstrass can be advantageous
(e.g., Jacobi-quartic [8]).

Structure of $E\left(\mathbb{F}_{q}\right)$

Proposition [9](5.78)

$E\left(\mathbb{F}_{q}\right)$ is either a cyclic group or isomorphic to a product of two cyclic groups $\mathbb{Z}_{n_{1}} \times \mathbb{Z}_{n_{2}}$ with $n_{1} \mid n_{2}$.

In ECC, it is preferred the former case, or at least for n_{1} to be very small.
In addition, the group order $\# E\left(\mathbb{F}_{q}\right)$ must be as close to prime as possible. This is because the complexity of the DLP is dependent on the size of the largest prime subgroup of $E\left(\mathbb{F}_{q}\right)$.

Point Counting

Theorem (Hasse Bound) [10]

$\# E\left(\mathbb{F}_{q}\right)=q+1-t$, where $|t| \leq 2 \sqrt{q}$.
t is called the trace of Frobenius, because of the Frobenius endomorphism $\pi: E \rightarrow E,(x, y) \mapsto\left(x^{q}, y^{q}\right)$ and its characteristic polynomial $\pi^{2}-[t] \circ \pi+[q]=0$.

Theorem (Deuring) [11]

If q is prime, then $\forall N \in[q+1-2 \sqrt{q}, q+1+2 \sqrt{q}]$ $\exists E \mid N=\# E\left(\mathbb{F}_{q}\right)$.

Shoof's polynomial-time algorithm $\left(O\left(\log ^{8} q\right)\right)$ for $t[12]$:

- solve $\left(x^{q^{2}}, y^{q^{2}}\right)-\left[t_{l}\right]\left(x^{q}, y^{q}\right)+\left[q_{l}\right](x, y)=\mathcal{O}$ for $t_{l} \equiv t(\bmod /)$ where $q_{l} \equiv q(\bmod /)$ and $(x, y) \in\{P \in E \mid[/] P=\mathcal{O}\}$ (I-torsion group). Unfortunately, I-torsion points cannot be explicitly used, since it is unknown where they are defined (it depends on the unknown group order).
However, the equation can be restricted to $R_{I}=\mathbb{F}_{q}[x, y] /\left\langle\psi_{I}(x), y^{2}-\left(x^{3}+a x+b\right)\right\rangle$ where $\psi_{l}(x)$ is a division polynomial (whose roots are the x-coordinates of the l-torsion points) [13];
- when $\prod_{l} l \geq 4 \sqrt{q}, t$ can be found through CRT.

Example [14](2.2.10)

$E / \mathbb{F}_{13}: y^{2}=x^{3}+2 x+1$
$\# E\left(\mathbb{F}_{13}\right)=q+1-t$, where $|t| \leq 2 \sqrt{13} \cong 7$
Schoof: $\prod_{l} I \geq 4 \sqrt{q} \cong 15 \Rightarrow I \in\{3,5\}$.

- $I=3: \psi_{3}(x)=3 x^{4}+12 x^{2}+12 x+9, q_{3}=1$.

After computing $\left(x^{169}, y^{169}\right),\left(x^{13}, y^{13}\right)$ and $\left[q_{3}\right](x, y)$ in $R_{3}=\mathbb{F}_{q}[x, y] /\left\langle\psi_{3}(x), y^{2}-\left(x^{3}+2 x+1\right)\right\rangle$ and testing incremental t_{3} until the Frobenius polynomial in R_{3} is satisfied, $t_{3}=0$ is obtained.

- $I=5$: analogously, $t_{5}=1$ is obtained.

The CRT with $t \equiv 0(\bmod 3), t \equiv 1(\bmod 5)$ and $|t| \leq 7$ gives $t=6$ so that $\# E\left(\mathbb{F}_{13}\right)=13+1-6=8$.
$E\left(\mathbb{F}_{13}\right)=\{\mathcal{O},(0,1),(0,12),(1,2),(1,11),(2,0),(8,3),(8,10)\}$ and one of its generators is $(0,1)$. So if A and B want to share a secret, they can take $P=(0,1)$ as basis and:

- A chooses $a=5$ and sends to B

$$
R=[a] P=[5](0,1)=\left[(101)_{2}\right](0,1):
$$

after initializing $R=P=(0,1)$,

$$
\begin{aligned}
& a_{2}=0 \Rightarrow R=[2] R=(1,11), \\
& a_{1}=1 \Rightarrow R=[2] R+P=(2,0)+(0,1)=(8,3) ;
\end{aligned}
$$

- B does the same with $b=3$ and sends $[b] P=[3](0,1)=(8,10)$ to A;
- A can evaluate $[a]([b] P)=[5](8,10)=(0,12)$;
- B can evaluate $[b]([a] P)=[3](8,3)=(0,12)$.

Pairings-Based Cryptography

Divisors

Divisors

A divisor on an elliptic curve E is $D=\sum_{P \in E} n_{P}(P)$, where all but finitely many $n_{P} \in \mathbb{Z}$ are zero.

The set of all divisors of E is $\operatorname{Div}(E)$ and is a group with natural addition and identity $0=\sum_{P \in E} O(P)$.
The degree of a divisor is $\operatorname{Deg}(D)=\sum_{P \in E} n_{P}$ and its support is $\operatorname{supp}(D)=\left\{P \in E \mid n_{P} \neq 0\right\}$.
The divisor of a function f is $(f)=\sum_{P \in E} \operatorname{ord}_{P}(f)(P)$.
$\operatorname{Deg}((f))=0,(f g)=(f)+(g),(f)=0$ iff f constant.

Divisor Class Group

Divisors with degree zero form a subgroup written as $\operatorname{Div}^{0}(E) \subset \operatorname{Div}(E)$.
A principal divisor is D for which $\exists f \mid D=(f)$ and they form the subgroup $\operatorname{Prin}(E) \subset \operatorname{Div}^{0}(E) \subset \operatorname{Div}(E)$.
Theorem [15](IX.2)
$D=\sum_{P} n_{P}(P) \in \operatorname{Div}^{0}(E)$ is principal iff $\sum_{P}\left[n_{P}\right] P=\mathcal{O}$.
$D_{1}, D_{2} \in \operatorname{Div}(E)$ are called equivalent $\left(D_{1} \sim D_{2}\right)$ if $\exists f \mid D_{1}=D_{2}+(f)$ (i.e., $D_{1}-D_{2} \in \operatorname{Prin}(E)$).
The divisor class group, or Picard group, of E is

$$
\operatorname{Pic}^{0}(E)=\operatorname{Div}^{0}(E) / \operatorname{Prin}(E) .
$$

The Riemann-Roch theorem [13](II.5.5) implies:

Proposition [13](III.3.4)

- For any divisor $D \in \operatorname{Div}^{0}(E)$ there exists a unique point $P \in E$ satisfying $D \sim(P)-(\mathcal{O})$.
- The map $\sigma: \operatorname{Div}^{0}(E) \rightarrow E, D \mapsto P$ is surjective.
- $\sigma\left(D_{1}\right)=\sigma\left(D_{2}\right)$ iff $D_{1} \sim D_{2}$.

Thus, σ induces an isomorphism between $\operatorname{Pic}^{0}(E)$ and E.
In PBC, elliptic curves are preferred because of this property that makes their computational speed unrivaled.

Weil Reciprocity

The evaluation of a function f at $D=\sum_{P \in E} n_{P}(P)$, where (f) and D have disjoint supports, is

$$
f(D)=\prod_{P \in E} f(P)^{n_{P}} .
$$

If $P \in \operatorname{supp}((f)) \cap \operatorname{supp}(D)$, then P is a zero or pole of f and $f(P)^{n_{P}}$ would be 0 or ∞.

Theorem (Weil Reciprocity) [15](IX.3)

If f, g are non-zero functions such that (f) and (g) have disjoint supports, then $f((g))=g((f))$.

Pairings

Pairing (in cryptography)

A pairing is a map $e: \mathbb{G}_{1} \times \mathbb{G}_{2} \rightarrow \mathbb{G}_{T}$ between finite abelian groups $\mathbb{G}_{1}, \mathbb{G}_{2}, \mathbb{G}_{T}$, which is:

- bilinear, i.e., $\forall P, P^{\prime} \in \mathbb{G}_{1}, Q, Q^{\prime} \in \mathbb{G}_{2}$

$$
\begin{aligned}
& e\left(P+P^{\prime}, Q\right)=e(P, Q) \cdot e\left(P^{\prime}, Q\right) \\
& e\left(P, Q+Q^{\prime}\right)=e(P, Q) \cdot e\left(P, Q^{\prime}\right)
\end{aligned}
$$

- non-degenerate, i.e., $\forall P \in \mathbb{G}_{1} \exists Q \in \mathbb{G}_{2} \mid e(P, Q) \neq 1$ and $\forall Q \in \mathbb{G}_{2} \exists P \in \mathbb{G}_{1} \mid e(P, Q) \neq 1$;
- efficiently computable and hardly invertible.

In particular, $e([a] P,[b] Q)=e(P, Q)^{a b}(\mathrm{DLP})$.

r-torsion

For the only known admissible pairings (Weil and Tate), P and Q must come from disjoint cyclic subgroups of same prime order r (because of the Weil reciprocity).
Thus, an important group is the r-torsion of E / \mathbb{k} :

$$
E[r]=\{P \in E \mid[r] P=\mathcal{O}\} .
$$

Theorem [9](13.13)

If $\operatorname{char}(\mathbb{k})=p$ with $p=0$ or $p \nmid r$, then $E[r] \cong \mathbb{Z}_{r} \times \mathbb{Z}_{r}$.
$\# E[r]=r^{2}$ and, since \mathcal{O} belongs to all its subgroups, $E[r]$ consists of $r+1$ cyclic subgroups of order r.

Embedding degree

When $E\left(\mathbb{F}_{q}\right)$ contains only one subgroup of order r, \mathbb{F}_{q} can be extended to $\mathbb{F}_{q^{k}}$ such that $E\left(\mathbb{F}_{q^{k}}\right)$ contains at least one other subgroup of order r.
The integer $k>1$ is called embedding degree, and can be found as the smallest positive integer such that:

- $r \mid\left(q^{k}-1\right)$;
- $\mathbb{F}_{q^{k}}$ contains all the r-roots of unity in $\overline{\mathbb{F}}_{q}$;
- $E[r] \subset E\left(\mathbb{F}_{q^{k}}\right)[13](X I .6 .2)$.

The focus will be on $r \mid \# E\left(\mathbb{F}_{q}\right)$ but $r^{2} \nmid \# E\left(\mathbb{F}_{q}\right)$, so that the r-torsion subgroup in $E\left(\mathbb{F}_{q}\right)$ is unique and $\mathbb{F}_{q^{k}}$ is the smallest extension of \mathbb{F}_{q} that contains all $E[r]$.

Characterization of $E[r]$

$E[r] \cap E\left(\mathbb{F}_{q}\right)$ is called the base-field subgroup \mathcal{G}_{1}.
π acts trivially on \mathcal{G}_{1}, so that it can be defined as
$\mathcal{G}_{1}=E[r] \cap \operatorname{Ker}(\pi-[1])$.
The other eigenvalue of
π is q and it defines
$\mathcal{G}_{2}=E[r] \cap \operatorname{Ker}(\pi-[q])$,
called the trace-zero subgroup because $\forall P \in \mathcal{G}_{2}$
$\operatorname{Tr}(P)=\sum_{i=0}^{k-1} \pi^{i}(P)=\mathcal{O}$.

The trace sends all other subgroups in \mathcal{G}_{1}, while they are mapped to \mathcal{G}_{2} by the anti-trace $\operatorname{Tr}(P)=[k] P-\operatorname{Tr}(P)$.

Supersingular Curves

Supersingular curve

An elliptic curve E is called supersingular if $\# E\left(\mathbb{F}_{q}\right)=q+1$.

For supersingular curves only, there exists a non- \mathbb{F}_{q}-rational map ϕ that takes points in $E\left(\mathbb{F}_{q}\right)$ to points in $E\left(\mathbb{F}_{q^{k}}\right)$, called distortion map.
In particular, ϕ maps out of \mathcal{G}_{1} and \mathcal{G}_{2} in different subgroups of $E[r]$.

Pairing Types

Usually, $\mathbb{G}_{T}=\mathbb{F}_{q^{k}}^{*}, \mathbb{G}_{1}=\mathcal{G}_{1}$ and the choice of \mathbb{G}_{2} among the subgroups of $E[r]$ divides pairings in 4 types [16].
The main factors affecting the classification are:

- the ability to hash or sample elements of \mathbb{G}_{2};
- the existence of a $\psi: \mathbb{G}_{2} \rightarrow \mathbb{G}_{1}$
(that makes security proofs work);
- computation efficiency.

1. E supersingular, $\mathbb{G}_{2}=\mathcal{G}_{1}$ and $e(P, Q)=\hat{e}(P, \phi(Q))$ (ê Weil or Tate pairing).
Pros: no hashing problems, trivial ψ.
Cons: supersingularity affects computation efficiency.

2. E supersingular, $\mathbb{G}_{2}=\mathcal{G}_{1}$ and $e(P, Q)=\hat{e}(P, \phi(Q))$ (ê Weil or Tate pairing).
Pros: no hashing problems, trivial ψ.
Cons: supersingularity affects computation efficiency.
3. E ordinary, $\mathbb{G}_{2} \subset E[r], \mathbb{G}_{2} \neq \mathcal{G}_{1}, \mathcal{G}_{2}$.

Pros: $\psi=\operatorname{Tr}, \mathrm{a} \operatorname{Tr}: \mathbb{G}_{2} \rightarrow \mathcal{G}_{2}$ helps in computation.
Cons: no efficient way to hash.

1. E supersingular, $\mathbb{G}_{2}=\mathcal{G}_{1}$ and $e(P, Q)=\hat{e}(P, \phi(Q))$ (ê Weil or Tate pairing).
Pros: no hashing problems, trivial ψ.
Cons: supersingularity affects computation efficiency.
2. E ordinary, $\mathbb{G}_{2} \subset E[r], \mathbb{G}_{2} \neq \mathcal{G}_{1}, \mathcal{G}_{2}$.

Pros: $\psi=\operatorname{Tr}, \mathrm{a} \operatorname{Tr}: \mathbb{G}_{2} \rightarrow \mathcal{G}_{2}$ helps in computation.
Cons: no efficient way to hash.
3. E ordinary, $\mathbb{G}_{2}=\mathcal{G}_{2}$.

Pros: good hash and computation.
Cons: $\psi: \mathcal{G}_{2} \rightarrow \mathcal{G}_{1}$ not efficient.

1. E supersingular, $\mathbb{G}_{2}=\mathcal{G}_{1}$ and $e(P, Q)=\hat{e}(P, \phi(Q))$ (ê Weil or Tate pairing).
Pros: no hashing problems, trivial ψ.
Cons: supersingularity affects computation efficiency.
2. E ordinary, $\mathbb{G}_{2} \subset E[r], \mathbb{G}_{2} \neq \mathcal{G}_{1}, \mathcal{G}_{2}$.

Pros: $\psi=\operatorname{Tr}, \mathrm{a} \operatorname{Tr}: \mathbb{G}_{2} \rightarrow \mathcal{G}_{2}$ helps in computation.
Cons: no efficient way to hash.
3. E ordinary, $\mathbb{G}_{2}=\mathcal{G}_{2}$.

Pros: good hash and computation.
Cons: $\psi: \mathcal{G}_{2} \rightarrow \mathcal{G}_{1}$ not efficient.
4. E ordinary, $\mathbb{G}_{2}=E[r]$.

Pros: $\psi=\operatorname{Tr}$, efficient computation.
Cons: no efficient way to hash (\mathbb{G}_{2} is not cyclic and of order r^{2}).

Weil and Tate pairings

Both pairings exploit that, from Th.[15](IX.2), for any $m \in \mathbb{Z}, P \in E$, there exists a function $f_{m, P}$ with divisor:

$$
\left(f_{m, P}\right)=m(P)-([m] P)-(m-1)(\mathcal{O}),
$$

where, for $m=0, f_{0, P}=1$ and $\left(f_{0, P}\right)=0$.
If $P \in E[r]$ then $\left(f_{r, P}\right)=r(P)-r(\mathcal{O})$.
$\left(f_{m+1, P}\right)-\left(f_{m, P}\right)=(P)+([m] P)-([m+1] P)-(\mathcal{O})$ which is the divisor of $\Lambda_{[m] P, P} / v_{[m+1] P}$ (lines used in the points addition), so that:

$$
f_{m+1, P}=f_{m, P} \frac{L_{[m] P, P}}{V_{[m+1]}} .
$$

Weil Pairing [17]

Let $P, Q \in E\left(\mathbb{F}_{q^{k}}\right)[r]$ and $D_{P}, D_{Q} \in \operatorname{Div}^{0}(E)$ with disjoint supports such that $D_{P} \sim(P)-(\mathcal{O})$ and $D_{Q} \sim(Q)-(\mathcal{O})$. There exist function f and g such that $(f)=r D_{P}$ and $(g)=r D_{Q}$, and the Weil pairing is:

$$
w_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right)[r] \rightarrow \mu_{r},(P, Q) \mapsto \frac{f\left(D_{Q}\right)}{g\left(D_{P}\right)} .
$$

$f_{r, P}$ and $f_{r, Q}$ can not be used as f and g because both $\left(f_{r, P}\right)$ and $\left(f_{r, Q}\right)$ contains \mathcal{O}, but if $R, S \in E\left(\mathbb{F}_{q^{k}}\right)$ then $D_{P}=(P+R)-(R)$ and $D_{Q}=(Q+S)-(S)$ can be considered, so that $f=f_{r, P} /\left(I_{P, R} / v_{P+R}\right)^{r}$ and $g=f_{r, Q} /\left(I_{Q, S} / v_{Q+S}\right)^{r}$ have $(f)=r D_{P}$ and $(g)=r D_{Q}$.

Given the coset $r E\left(\mathbb{F}_{q^{k}}\right)=\left\{[r] P \mid P \in E\left(\mathbb{F}_{q^{k}}\right)\right\}$, $E\left(\mathbb{F}_{q^{k}}\right)[r]$ represents $E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$.

Tate Pairing [18]

Let $P \in E\left(\mathbb{F}_{q^{k}}\right), f \mid(f)=r(P)-r(\mathcal{O}), Q \in E\left(\mathbb{F}_{q^{k}}\right)$
representative of a class in $E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right)$ and $D_{Q} \in \operatorname{Div}^{0}(E) \mid D_{Q} \sim(Q)-(\mathcal{O})$ whose support is disjoint to that of (f). The Tate pairing is:

$$
\begin{gathered}
t_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mathbb{F}_{q^{k}}^{*} /\left(\mathbb{F}_{q^{k}}^{*}\right)^{r}, \\
(P, Q) \mapsto f\left(D_{Q}\right) .
\end{gathered}
$$

f can be $f_{r, P}$ while D_{Q} can be taken as $(Q+R)-(R)$, where $R \in E\left(\mathbb{F}_{q^{k}}\right)$.

Outputs of Tate pairing lie in equivalence classes, while unique values are preferred. Thus an update is required.

Reduced Tate Pairing

Given P, f, Q, D_{Q} as before, the reduced Tate pairing is:

$$
\begin{gathered}
T_{r}: E\left(\mathbb{F}_{q^{k}}\right)[r] \times E\left(\mathbb{F}_{q^{k}}\right) / r E\left(\mathbb{F}_{q^{k}}\right) \rightarrow \mu_{r} \\
(P, Q) \mapsto t_{r}(P, Q)^{\# \mathbb{F}_{q^{k}} / r}=f\left(D_{Q}\right)^{\left(q^{k}-1\right) / r} .
\end{gathered}
$$

It is possible to consider $P \in \mathcal{G}_{1}$ and $Q \in \mathcal{G}_{2}$ (Type 3 pairing), since every value in μ_{r} will still be reached.

Miller's Algorithm

In order to compute $w_{r}(P, Q)$ and $T_{r}(P, Q)$, the evaluation of $f_{r, P}\left(D_{Q}\right)$ is required.
The difference between $\left(f_{r, P}\right)=r(P)-r(\mathcal{O})$ and $\left(f_{r-1, P}\right)=(r-1)(P)-([r-1] P)-(r-2)(\mathcal{O})$ is
$(P)+([r-1] P)-2(\mathcal{O})$, which corresponds to a multiplication by $v_{[r-1] P}$, so that $f_{r, P}=v_{[r-1] P} f_{r-1, P}$ and:

$$
f_{r, P}=v_{[r-1] P} \prod_{i=1}^{r-1} \frac{l_{[i] P, P}}{v_{[i+1] P}}=I_{[r-1] P, P} \prod_{i=1}^{r-2} \frac{l_{[i] P, P}}{v_{[i+1] P}}
$$

Thus, this method has exponential complexity $O(r)$ and, for huge r, it is unfeasible.

Miller's algorithm [19] makes pairings practical.
The idea is to observe that the difference between $\left(f_{2 m, P}\right)=2 m(P)-([2 m] P)-(2 m-1)(\mathcal{O})$ and $\left(f_{m, P}^{2}\right)=2 m(P)-2([m] P)-2(m-1)(\mathcal{O})$ is $2([m] P)-([2 m] P)-(\mathcal{O})$, which corresponds to the quotient of $\Lambda_{[m] P,[m] P}$ and $v_{[2 m] P}$, so that:

$$
f_{2 m, P}=f_{m, P}^{2} \cdot \frac{\Lambda_{[m \mid P,[m] P}}{V_{[2 m] P}} .
$$

This gives rise to a double-and-add algorithm with polynomial complexity $O(\log r)$.
Finally, since $f_{m, P}$ becomes too large to store and only $f_{r, P}\left(D_{Q}\right)$ is required, at each step $f_{m, P}\left(D_{Q}\right)$ is evaluated.

Pairing-Friendly Curves

Solving the DLP in $\mathbb{G}_{1}, \mathbb{G}_{2}$ or \mathbb{G}_{T} can broke the system. Thus, the attack complexity is the minimum between the size of $r\left(\right.$ for $\left.\mathbb{G}_{1}, \mathbb{G}_{2}\right)$ and that of $q^{k}\left(\right.$ for $\left.\mathbb{G}_{T}\right)$ and can be described by $k \cdot \rho=k \cdot \frac{\log q}{\log r}$. Since $r \mid \# E\left(\mathbb{F}_{q}\right), \rho \geq 1$. In addition, the pairing must be efficient, which means that arithmetic in $\mathbb{F}_{q^{k}}$ must be fast, i.e., k must be small.
To sum up, a curve is pairing-friendly [20] if:

- there is a prime $r \geq \sqrt{q}$ (i.e. $\rho \leq 2$);
- the embedding degree k is less than $\log _{2}(r) / 8$.

Example [14](5.3.1)

$E / \mathbb{F}_{q}: y^{2}=x^{3}+21 x+15$ with $q=47$ and $\# E\left(\mathbb{F}_{q}\right)=51=3 \cdot 17$, so $r=17$ and $\rho \cong 1.36$. Since $17 \mid\left(47^{4}-1\right), k=4$ and $\mathbb{F}_{q^{4}}=\mathbb{F}_{q}(u)$ where $u^{4}-4 u^{2}+5=0$.
$P=(45,23)$ has order 17 in $E\left(\mathbb{F}_{q}\right)$, thus $P \in \mathcal{G}_{1}$.
$Q \in \mathcal{G}_{2}$ can be found from any $R \in E\left(\mathbb{F}_{q^{4}}\right)$ by multiplying it for $h=3^{3} \cdot 5^{4}$ (since
$\left.\# E\left(\mathbb{F}_{q^{4}}\right)=3^{3} \cdot 5^{4} \cdot 17^{2}\right)$, so that $[h] R \in E[17]$ and
$\operatorname{a} \operatorname{Tr}([h] R) \in \mathcal{G}_{2}$.
For example, $Q=\left(31 u^{2}+29,35 u^{3}+11 u\right) \in \mathcal{G}_{2}$.

Chosen $D_{P}=([2] P)-(P)$ and $D_{Q}=([2] Q)-(Q)$, T_{r} requires only $f_{r, P}\left(D_{Q}\right)$ while w_{r} requires also $f_{r, Q}\left(D_{P}\right)$. Miller: $r=(1001)_{2}$ and the steps are:

r_{i}	R	l / v	$I\left(D_{Q}\right) / v\left(D_{Q}\right)$	$f_{r, P}\left(D_{Q}\right)$
1	$(45,23)$			1
0	$(12,16)$	$\frac{y+33 x+43}{x+35}$	$41 u^{3}+32 u^{2}+2 u+21$	$41 u^{3}+32 u^{2}+2 u+21$
0	$(27,14)$	$\frac{y+2 x+7}{x+20}$	$4 u^{3}+5 u^{2}+28 u+17$	$22 u^{3}+27 u^{2}+30 u+33$
0	$(18,31)$	$\frac{y+42 x+27}{x+29}$	$6 u^{3}+13 u^{2}+33 u+28$	$36 u^{3}+2 u^{2}+21 u+37$
1	$(45,24)$	$\frac{y+9 x+42}{x+2}$	$46 u^{3}+45 u^{2}+u+20$	$10 u^{3}+21 u^{2}+40 u+25$
	\mathcal{O}	$x+2$	$6 u^{2}+43$	$17 u^{3}+6 u^{2}+10 u+22$

$T_{r}(P, Q)=f_{r, P}\left(D_{Q}\right)^{\left(q^{k}-1\right) / r}=33 u^{3}+43 u^{2}+45 u+39$, for $w_{r}(P, Q)$ the calculations are analogous.

Joux's protocol [4]

If A, B and C want to share a secret, they can choose a common $P \in \mathcal{G}_{1}$ for a pairing of Type $1 e(P, P)$ and three personal elements $a, b, c \in \mathbb{F}_{q}^{*}$, then:

- A sends [a] P to B and C;
- B sends $[b] P$ to A and C;
- C sends $[c] P$ to A and B;
- A evaluates $e([b] P,[c] P)^{a}$;
- B evaluates $e([a] P,[c] P)^{b}$;
- C evaluates $e([a] P,[b] P)^{c}$.

Now they share the secret $K=e(P, P)^{a b c}$.

The future menace

Quantum computers, thanks to the Shor's algorithm, are theoretically capable of break DLP-based cryptography.

Bibliography I

[1] N. Koblitz, "Elliptic curve cryptosystems," Mathematics of Computation, vol. 48, no. 177, 1987.
[2] V. S. Miller, "Use of elliptic curves in cryptography," in Advances in Cryptology CRYPTO '85 Proceedings, 1986.
[3] A. Menezes, S. Vanstone, and T. Okamoto, "Reducing elliptic curve logarithms to logarithms in a finite field," in Proceedings of the Twenty-third Annual ACM Symposium on Theory of Computing, 1991.
[4] A. Joux, "A one round protocol for tripartite diffie-hellman," in Algorithmic Number Theory, 2000.
[5] D. Boneh and M. K. Franklin, "Identity-based encryption from the weil pairing," in Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology, 2001.
[6] D. Boneh, B. Lynn, and H. Shacham, "Short signatures from the weil pairing," in Advances in Cryptology - ASIACRYPT 2001, 2001.
[7] W. Diffie and M. Hellman, "New directions in cryptography," IEEE Trans. on Information Theory, vol. 22, no. 6, 1976.

Bibliography II

[8] O. Billet and M. Joye, "The jacobi model of an elliptic curve and side-channel analysis," in Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 2003.
[9] H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen, and F. Vercauteren, The Handbook of Elliptic and Hyperelliptic Curve Cryptography, Second Edition. Chapman \& Hall/CRC, 2012.
[10] H. Hasse, "Zur theorie der abstrakten elliptischen funktionenkörper I, II \& III," Journal für die reine und angewandte Mathematik, vol. 175, 1936.
[11] M. Deuring, "Die typen der multiplikatorenringe elliptischer funktionenkörper," Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 14, no. 1, 1941.
[12] R. Schoof, "Elliptic curves over finite fields and the computation of square roots mod p," Mathematics of Computation, vol. 44, no. 170, 1985.
[13] J. Silverman, The Arithmetic of Elliptic Curves.
Springer, 2009.
[14] C. Costello, "Pairings for beginners," 2012.

Bibliography III

[15] I. Blake, G. Seroussi, and N. Smart, Advances in Elliptic Curve Cryptography (London Mathematical Society Lecture Note Series).
Cambridge University Press, 2005.
[16] S. D. Galbraith, K. G. Paterson, and N. P. Smart, "Pairings for cryptographers," Discrete Applied Mathematics, vol. 156, no. 16, 2008.
[17] A. Weil, "Sur les fonctions algébriques à corps de constantes fini," Les Comptes rendus de l'Académie des sciences, vol. 210, 1940.
[18] J. Tate, "WC-groups over p-adic fields," in Séminaire Bourbaki: années 1956/571957/58, exposés 137-168, 1958.
[19] V. S. Miller, "The weil pairing, and its efficient calculation," Journal of Cryptology, vol. 17, no. 4, 2004.
[20] D. Freeman, M. Scott, and E. Teske, "A taxonomy of pairing-friendly elliptic curves," Journal of Cryptology, vol. 23, no. 2, 2010.

