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Introduction Elliptic-Curve Cryptography

Introduction
Elliptic-Curve Cryptography

Elliptic-Curve Cryptography (ECC):

• was suggested in 1985 by Koblitz [1] and Miller [2];

• has same security level with smaller parameters than
those required in Finite-Field Cryptography (e.g. DSA)
and Integer-Factorization Cryptography (e.g. RSA).
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Introduction Pairing-Based Cryptography

Pairing-Based Cryptography

Pairing-Based Cryptography (PBC):

• in the 1990s was exploited to break ECC [3];

• enables many elegant solutions to cryptographic
problems and allows innovative protocols (three-party
one-round key agreement [4], identity-base encryption
[5], short signatures [6], . . . ).
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Introduction Diffie-Hellman Problem

Diffie-Hellman Problem

ECC and PBC are approaches to Public-Key
Cryptography (PKC) whose security is based on the:

Diffie-Hellman Problem (DHP) [7]

Given the cyclic group G = 〈g〉 and the elements
g a, g b ∈ G , what is the value of g ab?

This problem is assumed to be hard (Diffie-Hellman
assumption) and the most efficient way to solve it is to
solve the Discrete Logarithm Problem (DLP).
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Elliptic-Curve Cryptography Elliptic Curves

Elliptic-Curve Cryptography
Elliptic Curves

Elliptic Curve

An elliptic curve E over a field k (written E/k) is a
non-singular plane cubic defined by an (affine) equation
f (x , y) = 0 with coefficients in k.

If char(k) /∈ {2, 3}, by an appropriate change of
variables, the curve equation can be written in its
short Weierstrass form:

y 2 = x3 + ax + b (a, b ∈ k).
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Elliptic-Curve Cryptography Group Definition

Group Definition

The group E (Fq) consists of all the points of the curve
with coordinates (x , y) over the algebraic closure of the
finite field Fq, in addition to the point at infinity O.

The group law is the operation defined as follows:

P + Q = R P + P = [2]P = R
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Elliptic-Curve Cryptography Explicit Group Law

Explicit Group Law

If P = (xP , yP),Q = (xQ , yQ) and R = P + Q, then the
line joining them is l : y = λx + ν where:

λ =
yQ − yP
xQ − xP

and ν =
yQxP − yPxQ

xP − xQ
.

Thus, xR = x−R is obtained from the equation of l ∩ E :

(x − xP)(x − xQ)(x − xR) = x3 + ax + b − (λx + ν)2

as the coefficient of x2 while yR = −y−R from the line l ,
so that:

xR = λ2 − xP − xQ and yR = −(λxR + ν) .
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Elliptic-Curve Cryptography Explicit Group Law

If P = (xP , yP) and R = P + P = [2]P , then the
derivative in x of the equation of E is needed:

d(y 2)

dy

dy

dx
=

d(x3 + ax + b)

dx
⇒ dy

dx
=

3x2 + a

2y
.

Thus, the tangent to E in P is l : y = λx + ν where:

λ =
dy

dx
(P) =

3x2P + a

2yP
and ν = yP − λxP .

As before, xR = x−R is obtained from the equation of
l ∩ E as the coefficient of x2 (now with double xP), while
yR = −y−R from the line l , so that:

xR = λ2 − 2xP and yR = −(λxR + ν) .
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Elliptic-Curve Cryptography Multiplication

Multiplication

Multiply points by integers is crucial in ECC, as it is the
one-way operation that buries the DLP in E (Fq).

An efficient way to compute R = [m]P is the
double-and-add algorithm:
1. m = (mn+1, . . . ,m1) ∈ Zn+1

2

2. R = P
3. for i ∈ {n, . . . , 1}
4. R = [2]R
5. if mi = 1
6. R = R + P

In general, this algorithm will take log2m doublings and
roughly half as many additions to compute [m]P .
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Elliptic-Curve Cryptography Speeding Up Computations

Speeding Up Computations

Computations in ECC are more complicated than those
in other DLP based protocols (e.g., with F∗q).

The more abstract nature of elliptic curve groups can be
a benefit: best available attacks remain generic.

In order to speed up computations:

• projective coordinates are preferred to affine ones,
since no inversion in Fq is required;

• if some conditions hold, some equation forms different
from Weierstrass can be advantageous
(e.g., Jacobi-quartic [8]).
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Elliptic-Curve Cryptography Structure of E(Fq)

Structure of E (Fq)

Proposition [9](5.78)

E (Fq) is either a cyclic group or isomorphic to a product
of two cyclic groups Zn1

× Zn2
with n1|n2.

In ECC, it is preferred the former case, or at least for n1
to be very small.

In addition, the group order #E (Fq) must be as close to
prime as possible. This is because the complexity of the
DLP is dependent on the size of the largest prime
subgroup of E (Fq).
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Elliptic-Curve Cryptography Point Counting

Point Counting

Theorem (Hasse Bound) [10]

#E (Fq) = q + 1− t, where |t| ≤ 2
√
q.

t is called the trace of Frobenius, because of the
Frobenius endomorphism π : E → E , (x , y) 7→ (xq, y q)
and its characteristic polynomial π2 − [t] ◦ π + [q] = 0.

Theorem (Deuring) [11]

If q is prime, then ∀N ∈ [q + 1− 2
√
q, q + 1 + 2

√
q]

∃E |N = #E (Fq).
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Elliptic-Curve Cryptography Point Counting

Shoof’s polynomial-time algorithm (O(log8q)) for t [12]:

• solve (xq
2

, y q
2

)− [tl ](x
q, y q) + [ql ](x , y) = O for

tl ≡ t(mod l) where ql ≡ q(mod l) and
(x , y) ∈ {P ∈ E | [l ]P = O} (l-torsion group).

Unfortunately, l-torsion points cannot be explicitly
used, since it is unknown where they are defined
(it depends on the unknown group order).

However, the equation can be restricted to
Rl = Fq[x , y ]/〈ψl(x), y 2 − (x3 + ax + b)〉
where ψl(x) is a division polynomial (whose roots are
the x-coordinates of the l-torsion points) [13];

• when
∏

l l ≥ 4
√
q, t can be found through CRT.
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Elliptic-Curve Cryptography Example

Example [14](2.2.10)

E/F13 : y 2 = x3 + 2x + 1

#E (F13) = q + 1− t , where |t| ≤ 2
√

13 ∼= 7

Schoof:
∏

l l ≥ 4
√
q ∼= 15⇒ l ∈ {3, 5}.

• l = 3 : ψ3(x) = 3x4 + 12x2 + 12x + 9, q3 = 1.
After computing (x169, y 169), (x13, y 13) and [q3](x , y)
in R3 = Fq[x , y ]/〈ψ3(x), y 2 − (x3 + 2x + 1)〉 and
testing incremental t3 until the Frobenius polynomial
in R3 is satisfied, t3 = 0 is obtained.

• l = 5 : analogously, t5 = 1 is obtained.

The CRT with t ≡ 0(mod3), t ≡ 1(mod5) and |t| ≤ 7
gives t = 6 so that #E (F13) = 13 + 1− 6 = 8.
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Elliptic-Curve Cryptography Example

E (F13)={O,(0,1),(0,12),(1,2),(1,11),(2,0),(8,3),(8,10)}
and one of its generators is (0, 1). So if A and B want to
share a secret, they can take P = (0, 1) as basis and:

• A chooses a = 5 and sends to B
R = [a]P = [5](0, 1) = [(101)2](0, 1):
after initializing R = P = (0, 1),
a2 = 0⇒ R = [2]R = (1, 11),
a1 = 1⇒ R = [2]R + P = (2, 0) + (0, 1) = (8, 3);

• B does the same with b = 3 and sends
[b]P = [3](0, 1) = (8, 10) to A;

• A can evaluate [a]([b]P) = [5](8, 10) = (0, 12);

• B can evaluate [b]([a]P) = [3](8, 3) = (0, 12).
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Pairing-Based Cryptography Divisors

Pairings-Based Cryptography
Divisors

Divisors

A divisor on an elliptic curve E is D =
∑

P∈E nP(P),
where all but finitely many nP ∈ Z are zero.

The set of all divisors of E is Div(E ) and is a group with
natural addition and identity 0 =

∑
P∈E 0(P).

The degree of a divisor is Deg(D) =
∑

P∈E nP and its
support is supp(D) = {P ∈ E | nP 6= 0}.
The divisor of a function f is (f ) =

∑
P∈E ordP(f )(P).

Deg((f )) = 0, (fg) = (f ) + (g), (f ) = 0 iff f constant.
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Pairing-Based Cryptography Divisor Class Group

Divisor Class Group

Divisors with degree zero form a subgroup written as
Div0(E ) ⊂ Div(E ).

A principal divisor is D for which ∃f |D = (f ) and they
form the subgroup Prin(E ) ⊂ Div0(E ) ⊂ Div(E ).

Theorem [15](IX.2)

D =
∑

P nP(P) ∈ Div0(E ) is principal iff
∑

P [nP ]P = O.

D1,D2 ∈ Div(E ) are called equivalent (D1 ∼ D2) if
∃f |D1 = D2 + (f ) (i.e., D1 − D2 ∈ Prin(E )).

The divisor class group, or Picard group, of E is

Pic0(E ) = Div0(E )/Prin(E ) .
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Pairing-Based Cryptography Divisor Class Group

The Riemann-Roch theorem [13](II.5.5) implies:

Proposition [13](III.3.4)

• For any divisor D ∈ Div0(E ) there exists a unique
point P ∈ E satisfying D ∼ (P)− (O).

• The map σ : Div0(E )→ E ,D 7→ P is surjective.

• σ(D1) = σ(D2) iff D1 ∼ D2.

Thus, σ induces an isomorphism between Pic0(E ) and E .

In PBC, elliptic curves are preferred because of this
property that makes their computational speed unrivaled.
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Pairing-Based Cryptography Weil Reciprocity

Weil Reciprocity

The evaluation of a function f at D =
∑

P∈E nP(P),
where (f ) and D have disjoint supports, is

f (D) =
∏

P∈E f (P)nP .

If P ∈ supp((f ))∩ supp(D), then P is a zero or pole of f
and f (P)nP would be 0 or ∞.

Theorem (Weil Reciprocity) [15](IX.3)

If f , g are non-zero functions such that (f ) and (g) have
disjoint supports, then f ((g)) = g((f )).
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Pairing-Based Cryptography Pairings

Pairings

Pairing (in cryptography)

A pairing is a map e : G1 ×G2 → GT between finite
abelian groups G1,G2,GT , which is:

• bilinear, i.e., ∀P ,P ′ ∈ G1,Q,Q
′ ∈ G2

e(P + P ′,Q) = e(P ,Q) · e(P ′,Q) ,

e(P ,Q + Q ′) = e(P ,Q) · e(P ,Q ′) ;

• non-degenerate, i.e., ∀P ∈ G1 ∃Q ∈ G2 | e(P ,Q) 6= 1
and ∀Q ∈ G2 ∃P ∈ G1 | e(P ,Q) 6= 1;

• efficiently computable and hardly invertible.

In particular, e([a]P , [b]Q) = e(P ,Q)ab (DLP).
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Pairing-Based Cryptography r -torsion

r -torsion

For the only known admissible pairings (Weil and Tate),
P and Q must come from disjoint cyclic subgroups of
same prime order r (because of the Weil reciprocity).

Thus, an important group is the r-torsion of E/k:

E [r ] = {P ∈ E | [r ]P = O}.

Theorem [9](13.13)

If char(k) = p with p = 0 or p - r , then E [r ] ∼= Zr × Zr .

#E [r ] = r 2 and, since O belongs to all its subgroups,
E [r ] consists of r + 1 cyclic subgroups of order r .
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Pairing-Based Cryptography Embedding degree

Embedding degree

When E (Fq) contains only one subgroup of order r ,
Fq can be extended to Fqk such that E (Fqk) contains at
least one other subgroup of order r .

The integer k > 1 is called embedding degree, and can
be found as the smallest positive integer such that:

• r | (qk − 1);

• Fqk contains all the r -roots of unity in Fq;

• E [r ] ⊂ E (Fqk) [13](XI.6.2).

The focus will be on r |#E (Fq) but r 2 - #E (Fq), so that
the r -torsion subgroup in E (Fq) is unique and Fqk is the
smallest extension of Fq that contains all E [r ].
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Pairing-Based Cryptography Characterization of E [r ]

Characterization of E [r ]

E [r ] ∩ E (Fq) is called the base-field subgroup G1.
π acts trivially on G1, so that it can be defined as
G1 = E [r ] ∩ Ker(π − [1]).

The other eigenvalue of
π is q and it defines
G2 = E [r ] ∩ Ker(π − [q]),
called the trace-zero
subgroup because ∀P ∈ G2
Tr(P) =

∑k−1
i=0 π

i(P) = O.

The trace sends all other subgroups in G1, while they are
mapped to G2 by the anti-trace aTr(P) = [k]P − Tr(P).
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Pairing-Based Cryptography Supersingular Curves

Supersingular Curves

Supersingular curve

An elliptic curve E is called supersingular if
#E (Fq) = q + 1.

For supersingular curves only, there exists a
non-Fq-rational map φ that takes points in E (Fq) to
points in E (Fqk), called distortion map.

In particular, φ maps out of G1 and G2 in different
subgroups of E [r ].
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Pairing-Based Cryptography Pairing Types

Pairing Types

Usually, GT = F∗qk ,G1 = G1 and the choice of G2 among

the subgroups of E [r ] divides pairings in 4 types [16].

The main factors affecting the classification are:

• the ability to hash or sample elements of G2;

• the existence of a ψ : G2 → G1

(that makes security proofs work);

• computation efficiency.
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Pairing-Based Cryptography Pairing Types

1. E supersingular, G2 = G1 and e(P ,Q) = ê(P , φ(Q))
(ê Weil or Tate pairing).
Pros: no hashing problems, trivial ψ.
Cons: supersingularity affects computation efficiency.

2. E ordinary, G2 ⊂ E [r ],G2 6= G1,G2.
Pros: ψ = Tr, aTr : G2 → G2 helps in computation.
Cons: no efficient way to hash.

3. E ordinary, G2 = G2.
Pros: good hash and computation.
Cons: ψ : G2 → G1 not efficient.

4. E ordinary, G2 = E [r ].
Pros: ψ = Tr, efficient computation.
Cons: no efficient way to hash
(G2 is not cyclic and of order r 2).
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Pairing-Based Cryptography Weil and Tate pairings

Weil and Tate pairings

Both pairings exploit that, from Th.[15](IX.2), for any
m ∈ Z, P ∈ E , there exists a function fm,P with divisor:

(fm,P) = m(P)− ([m]P)− (m − 1)(O) ,

where, for m = 0, f0,P = 1 and (f0,P) = 0.

If P ∈ E [r ] then (fr ,P) = r(P)− r(O).

(fm+1,P)− (fm,P) = (P) + ([m]P)− ([m + 1]P)− (O)
which is the divisor of l[m]P,P/v[m+1]P (lines used in the
points addition), so that:

fm+1,P = fm,P
l[m]P,P

v[m+1]P
.
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Pairing-Based Cryptography Weil and Tate pairings

Weil Pairing [17]

Let P ,Q ∈ E (Fqk)[r ] and DP ,DQ ∈ Div0(E ) with
disjoint supports such that DP ∼ (P)− (O) and
DQ ∼ (Q)− (O). There exist function f and g such
that (f ) = rDP and (g) = rDQ , and the Weil pairing is:

wr : E (Fqk)[r ]× E (Fqk)[r ]→ µr , (P ,Q) 7→ f (DQ)
g(DP)

.

fr ,P and fr ,Q can not be used as f and g because both
(fr ,P) and (fr ,Q) contains O, but if R , S ∈ E (Fqk) then
DP = (P + R)− (R) and DQ = (Q + S)− (S) can be
considered, so that f = fr ,P/(lP,R/vP+R)r and
g = fr ,Q/(lQ,S/vQ+S)r have (f ) = rDP and (g) = rDQ .
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Pairing-Based Cryptography Weil and Tate pairings

Given the coset rE (Fqk) = {[r ]P |P ∈ E (Fqk)},
E (Fqk)[r ] represents E (Fqk)/rE (Fqk).

Tate Pairing [18]

Let P ∈ E (Fqk), f | (f ) = r(P)− r(O), Q ∈ E (Fqk)
representative of a class in E (Fqk)/rE (Fqk) and

DQ ∈ Div0(E ) |DQ ∼ (Q)− (O) whose support is
disjoint to that of (f ). The Tate pairing is:

tr : E (Fqk)[r ]×E (Fqk)/rE (Fqk)→ F∗qk/(F∗qk)r ,

(P ,Q) 7→ f (DQ) .

f can be fr ,P while DQ can be taken as (Q + R)− (R),
where R ∈ E (Fqk).
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Pairing-Based Cryptography Weil and Tate pairings

Outputs of Tate pairing lie in equivalence classes, while
unique values are preferred. Thus an update is required.

Reduced Tate Pairing

Given P , f ,Q,DQ as before, the reduced Tate pairing is:

Tr : E (Fqk)[r ]×E (Fqk)/rE (Fqk)→ µr ,

(P ,Q) 7→ tr(P ,Q)#Fqk /r = f (DQ)(q
k−1)/r .

It is possible to consider P ∈ G1 and Q ∈ G2 (Type 3
pairing), since every value in µr will still be reached.
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Pairing-Based Cryptography Miller’s Algorithm

Miller’s Algorithm

In order to compute wr(P ,Q) and Tr(P ,Q), the
evaluation of fr ,P(DQ) is required.

The difference between (fr ,P) = r(P)− r(O) and
(fr−1,P) = (r − 1)(P)− ([r − 1]P)− (r − 2)(O) is
(P) + ([r − 1]P)− 2(O), which corresponds to a
multiplication by v[r−1]P , so that fr ,P = v[r−1]P fr−1,P and:

fr ,P = v[r−1]P

r−1∏
i=1

l[i ]P,P
v[i+1]P

= l[r−1]P,P

r−2∏
i=1

l[i ]P,P
v[i+1]P

Thus, this method has exponential complexity O(r) and,
for huge r , it is unfeasible.
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Pairing-Based Cryptography Miller’s Algorithm

Miller’s algorithm [19] makes pairings practical.

The idea is to observe that the difference between
(f2m,P) = 2m(P)− ([2m]P)− (2m − 1)(O) and
(f 2m,P) = 2m(P)− 2([m]P)− 2(m − 1)(O) is
2([m]P)− ([2m]P)− (O), which corresponds to the
quotient of l[m]P,[m]P and v[2m]P , so that:

f2m,P = f 2m,P ·
l[m]P,[m]P

v[2m]P
.

This gives rise to a double-and-add algorithm with
polynomial complexity O(log r).

Finally, since fm,P becomes too large to store and only
fr ,P(DQ) is required, at each step fm,P(DQ) is evaluated.
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Pairing-Based Cryptography Pairing-Friendly Curves

Pairing-Friendly Curves

Solving the DLP in G1, G2 or GT can broke the system.
Thus, the attack complexity is the minimum between the
size of r (for G1, G2) and that of qk (for GT ) and can
be described by k · ρ = k · log qlog r . Since r |#E (Fq), ρ ≥ 1.

In addition, the pairing must be efficient, which means
that arithmetic in Fqk must be fast, i.e., k must be small.

To sum up, a curve is pairing-friendly [20] if:

• there is a prime r ≥ √q (i.e. ρ ≤ 2);

• the embedding degree k is less than log2(r)/8.
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Pairing-Based Cryptography Example

Example [14](5.3.1)

E/Fq : y 2 = x3 + 21x + 15 with q = 47 and
#E (Fq) = 51 = 3 · 17, so r = 17 and ρ ∼= 1.36. Since
17 | (474 − 1), k = 4 and Fq4 = Fq(u) where
u4 − 4u2 + 5 = 0.

P = (45, 23) has order 17 in E (Fq), thus P ∈ G1.

Q ∈ G2 can be found from any R ∈ E (Fq4) by
multiplying it for h = 33 · 54 (since
#E (Fq4) = 33 · 54 · 172), so that [h]R ∈ E [17] and
aTr([h]R) ∈ G2.
For example, Q = (31u2 + 29, 35u3 + 11u) ∈ G2.
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Pairing-Based Cryptography Example

Chosen DP = ([2]P)− (P) and DQ = ([2]Q)− (Q),
Tr requires only fr ,P(DQ) while wr requires also fr ,Q(DP).

Miller: r = (1001)2 and the steps are:

ri R l/v l(DQ)/v(DQ) fr ,P(DQ)
1 (45,23) 1
0 (12,16) y+33x+43

x+35 41u3 + 32u2 + 2u + 21 41u3 + 32u2 + 2u + 21

0 (27,14) y+2x+7
x+20 4u3 + 5u2 + 28u + 17 22u3 + 27u2 + 30u + 33

0 (18,31) y+42x+27
x+29 6u3 + 13u2 + 33u + 28 36u3 + 2u2 + 21u + 37

1 (45,24) y+9x+42
x+2 46u3 + 45u2 + u + 20 10u3 + 21u2 + 40u + 25

O x + 2 6u2 + 43 17u3 + 6u2 + 10u + 22

Tr(P ,Q) = fr ,P(DQ)(q
k−1)/r = 33u3 + 43u2 + 45u + 39,

for wr(P ,Q) the calculations are analogous.
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Joux’s protocol [4]

If A, B and C want to share a secret, they can choose a
common P ∈ G1 for a pairing of Type 1 e(P ,P) and
three personal elements a, b, c ∈ F∗q, then:

• A sends [a]P to B and C ;

• B sends [b]P to A and C ;

• C sends [c]P to A and B ;

• A evaluates e([b]P , [c]P)a;

• B evaluates e([a]P , [c]P)b;

• C evaluates e([a]P , [b]P)c .

Now they share the secret K = e(P ,P)abc .
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The future menace

Quantum computers, thanks to the Shor’s algorithm, are
theoretically capable of break DLP-based cryptography.
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