
Symmetric Cryptography 2.0

Guido Bertoni1

based on joint work with
Joan Daemen2, Seth Hoffert, Michaël Peeters3, Gilles Van Assche3

and Ronny Van Keer3

1Security Pattern 2Radboud University 3STMicroelectronics

Politecnico di Torino 2019, May 10th, 2019

1 / 84

Symmetric crypto: what textbooks say

Symmetric cryptographic primitives:
Block ciphers
Stream ciphers
Hash functions

And their modes-of-use

Picture by GlasgowAmateur

2 / 84

Introduction Short definition

Cryptographic hash functions

Function h
from any binary string {0, 1}∗
to a fixed-size digest {0, 1}n
One-way: given h(x) hard to find x…

Applications in cryptography
Signatures: signRSA(h(M)) instead of signRSA(M)
Key derivation: master key K to derived keys (Ki = h(K∥i))
Bit commitment, predictions: h(what I know)
Message authentication: h(K∥M)
…

3 / 84

Introduction The mainstream in hash functions

Examples of popular hash functions

MD5: n = 128
Published by Ron Rivest in 1992
Successor of MD4 (1990)

SHA-1: n = 160
Designed by NSA, standardized by NIST in 1995
Successor of SHA-0 (1993)

SHA-2: family supporting multiple lengths
Designed by NSA, standardized by NIST in 2001
4 members named SHA-n
SHA-224, SHA-256, SHA-384 and SHA-512

4 / 84

Introduction Internals

The chaining structure: Merkle-Damgård

Simple iterative construction:
iterative application of compression function (CF)

Proven collision-resistance preserving

5 / 84

Introduction Internals

Merkle-Damgård strengthening

Input length added to the input string

6 / 84

Introduction Internals

Enveloped Merkle-Damgård

Special processing for last call

7 / 84

Introduction Internals

Variable-output-length Merkle-Damgård

Mask generating function (MGF)

8 / 84

Introduction Internals

The compression function: Davies-Meyer (nearly)

Uses a block cipher:
Separated data path and message expansion

But not one-way!

9 / 84

Introduction Internals

The compression function: Davies-Meyer

Uses a block cipher:
Separated data path and message expansion

Some feedforward due to Merkle-Damgård

10 / 84

Introduction Internals

Combining them all

This is not so simple anymore…

11 / 84

Introduction Internals

The use of basic operations

All popular hash functions were based on ARX
addition modulo 2n with n = 32 (and n = 64)
bitwise addition: XOR
bitwise shift operations, cyclic shift
security: “algebraically incompatible operations”

ARX would be elegant
…but silently assumes a specific integer coding

ARX would be efficient
…but only in software on CPUs with n-bit words

ARX would have good cryptographic properties
but is very hard to analyze
…attacks have appeared after years

ARX pretty complex to protect against side channel attacks

12 / 84

Introduction A crisis of confidence

Cryptanalysis escalation

1991-1993: Den Boer and Bosselaers attack MD4 and MD5
1996: Dobbertin improves attacks on MD4 and MD5
1998: Chabaud and Joux attack SHA-0
2004: Joux et al. break SHA-0
2004: Wang et al. break MD5
2004: Joux show multicollisions on Merkle-Damgård
2005: Lenstra et al., and Klima, make MD5 attack practical
2005: Wang et al. theoretically break SHA-1
2005: Kelsey and Schneier: 2nd pre-image attacks on MD
2006: De Cannière and Rechberger further break SHA-1
2006: Kohno and Kelsey: herding attacks on MD

13 / 84

The SHA-3 contest NIST calls out for help

A way out of the hash function crisis

2005-2006: trust in established hash functions was crumbling,
due to

use of ARX
adoption of Merkle-Damgård
and SHA-2 were based on the same principles

2007: NIST calls for SHA-3
similar to AES contest
a case for the international cryptographic community!

14 / 84

The SHA-3 contest The deal

SHA-3 contest

Open competition organized by NIST
NIST provides forum
scientific community contributes: designs, attacks,
implementations, comparisons
NIST draws conclusions and decides

Goal: replacement for the SHA-2 family
224, 256, 384 and 512-bit output sizes
other output sizes are optional

Requirements
security levels specified for traditional attacks
each submission must have

complete documentation, including design rationale
reference and optimized implementations in C

15 / 84

The SHA-3 contest Time schedule

SHA-3 time schedule

January 2007: initial call
October 2008: submission deadline
February 2009: first SHA-3 conference in Leuven

Presentation of 1st round candidates

July 2009: NIST announces 2nd round candidates
August 2010: second SHA-3 conference in Santa Barbara

cryptanalytic results
hardware and software implementation surveys
new applications

December 2010: announcement of finalists
2012: final SHA-3 conference and selection of winner
2015: FIPS 202 standard, SHA-3 and SHAKEs

16 / 84

Hash function security requirements Traditional requirements

Traditional security requirements of hash functions

Function h from Z∗2 to Zn2

Security requirements
pre-image resistance
2nd pre-image resistance
collision resistance

17 / 84

Hash function security requirements Traditional requirements

Pre-image resistance

Given y ∈ Zn2 , find x ∈ Z∗2 such that h(x) = y
Example: given derived key K1 = h(K∥1), find master key K

There exists a generic attack requiring about 2n calls to h
Requirement: there is no attack more efficient

18 / 84

Hash function security requirements Traditional requirements

2nd pre-image resistance

Given x ∈ Z∗2 , find x′ ̸= x such that h(x′) = h(x)
Example: signature forging

given M and sign(h(M)), find another M′ with equal signature

There exists a generic attack requiring about 2n calls to h

19 / 84

Hash function security requirements Traditional requirements

Collision resistance

Find x1 ̸= x2 such that h(x1) = h(x2)

There exists a generic attack requiring about 2n/2 calls to h

20 / 84

Hash function security requirements Traditional requirements

Collision resistance

Find x1 ̸= x2 such that h(x1) = h(x2)

There exists a generic attack requiring about 2n/2 calls to h
Birthday paradox: among 23 people, two have the same birthday
(with 50% probability)

20 / 84

Hash function security requirements Traditional requirements

Collision resistance (continued)

Example: “secretary” signature forging
Set of good messages {Mgood

i }
Set of bad messages {Mbad

i }
Find h(Mgood

i) = h(Mbad
j)

Boss signs Mgood
i , but valid also for Mbad

j

21 / 84

Hash function security requirements Additional requirements

Other requirements

What if we use a hash function in other applications?
To build a MAC function, e.g., HMAC (FIPS 198)
To destroy algebraic structure, e.g.,

encryption with RSA: OAEP (PKCS #1)
signing with RSA: PSS (PKCS #1)

Problem:
additional requirements on top of traditional ones
how to know what a hash function is designed for?

22 / 84

Hash function security requirements The challenge of expressing security claims

Contract

Security of a concrete hash function h cannot be proven
sometimes reductions are possible…
rely on public scrutiny!

Security claim: contract between designer and user
security claims ≥ security requirements
attack that invalidates claim, breaks h!

Claims often implicit
e.g., the traditional security requirements are implied

23 / 84

Hash function security requirements The challenge of expressing security claims

List of claimed properties

Security claims by listing desired properties
collision resistant
(2nd) pre-image resistant
correlation-free
resistant against length-extension attacks
chosen-target forced-prefix pre-image resistance
…

But ever-growing list of desired properties
Moving target as new applications appear over time

But hey, the ideal hash function exists!

24 / 84

Hash function security requirements Random oracles (RO)

Random oracle RO

A random oracle [Bellare-Rogaway 1993] maps:
message of variable length
to an infinite output string

Supports queries of following type: (M, ℓ)
M: message
ℓ: requested number of output bits

Response Z
String of ℓ bits
Independently and identically distributed bits
Self-consistent: equal M give matching outputs

25 / 84

Hash function security requirements Random oracles (RO)

Compact security claim

Truncated to n bits, RO has all desired properties, e.g.,
Generating a collision: 2n/2

Finding a (2nd) pre-image: 2n
And [my chosen requirement]: f(n)

Proposal for a compact security claim:
“My function h behaves as a random oracle”

Does not work, unfortunately

26 / 84

Hash function security requirements The finite memory

Iterated hash functions

All practical hash functions are iterated
Message M cut into blocks M1, . . . ,Ml
q-bit chaining value

Output is function of final chaining value

27 / 84

Hash function security requirements The finite memory

Internal collisions!

Difference inputs M and M′ giving the same chaining value
Messages M∥X and M′∥X always collide for any string X

28 / 84

Hash function security requirements The finite memory

How to deal with internal collisions?

RO has no internal collisions
If truncated to n bits, it does have collisions, say M and M′
But M||X and M′||X collide only with probability 2−n
Random oracle has “infinite memory”

Abandon iterated modes to meet the RO ideal?
In-memory hashing, non-streamable hash functions?
Model for finite memory, internal collisions!

29 / 84

Sponge functions and Permutation-based primitives The sponge construction

The sponge construction

r bits of rate
c bits of capacity
Flat sponge claim: security is 2c/2

30 / 84

Sponge functions and Permutation-based primitives The sponge construction

What does a flat sponge claim state?

Example: c = 256
Collision-resistance:

Similar to that of random oracle up to n = 256
Maximum achievable security level: 2128

(2nd) pre-image resistance:
Similar to that of random oracle up to n = 128
Maximum achievable security level: 2128

Flat sponge claim forms a ceiling to the security claim

31 / 84

Sponge functions and Permutation-based primitives Straightforward applications

How to use a sponge function?

For regular hashing

32 / 84

Sponge functions and Permutation-based primitives Straightforward applications

How to use a sponge function?

For salted hashing

33 / 84

Sponge functions and Permutation-based primitives Straightforward applications

How to use a sponge function?

As a message authentication code

34 / 84

Sponge functions and Permutation-based primitives Straightforward applications

How to use a sponge function?

As a stream cipher

35 / 84

Sponge functions and Permutation-based primitives Straightforward applications

How to use a sponge function?

As a mask generating function [PKCS#1, IEEE Std 1363a]

36 / 84

Sponge functions and Permutation-based primitives Straightforward applications

Both encryption and MAC?

37 / 84

Keccak

Inside the permutation

f = …

rounds

38 / 84

Keccak The beginning

The beginning

Subterranean: Daemen (1991)
variable-length input and output
hashing and stream cipher
round function interleaved with input/output

StepRightUp: Daemen (1994)
Panama: Daemen and Clapp (1998)
RadioGatún: Bertoni, Daemen, Peeters and VA (2006)

experiments did not inspire confidence in RadioGatún
NIST SHA-3 deadline approaching …
U-turn: design a sponge with strong permutation f

Keccak (2008)

39 / 84

Keccak Defining Keccak

Designing the permutation Keccak-f

Our mission
To design a permutation called Keccak-f that cannot be distinguished
from a random permutation.

Classical LC/DC criteria
absence of large differential propagation probabilities
absence of large input-output correlations

Immunity to
integral cryptanalysis
algebraic attacks
slide and symmetry-exploiting attacks
…

40 / 84

Keccak Defining Keccak

Keccak

Instantiation of a sponge function
Keccak uses a permutation Keccak-f

7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}

Security-speed trade-offs using the same permutation
Examples

SHA-3-256: r = 1088 and c = 512 for 2c/2 = 2256 security
lightweight: r = 40 and c = 160 for 2c/2 = 280 security

41 / 84

Keccak Inside Keccak-f

The state: an array of 5× 5× 2ℓ bits

x

y z
state

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5× 5)-bit slices, 2ℓ of them

42 / 84

Keccak Inside Keccak-f

The state: an array of 5× 5× 2ℓ bits

x

y z
lane

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5× 5)-bit slices, 2ℓ of them

42 / 84

Keccak Inside Keccak-f

The state: an array of 5× 5× 2ℓ bits

x

y z
slice

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5× 5)-bit slices, 2ℓ of them

42 / 84

Keccak Inside Keccak-f

The state: an array of 5× 5× 2ℓ bits

x

y z
row

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5× 5)-bit slices, 2ℓ of them

42 / 84

Keccak Inside Keccak-f

The state: an array of 5× 5× 2ℓ bits

x

y z
column

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5× 5)-bit slices, 2ℓ of them

42 / 84

Keccak Inside Keccak-f

The Rounds of Keccak-f

A round consists of 5 invertible step mappings
θ for diffusion
ρ for inter-slice dispersion
π for disturbing horizontal/vertical alignment
χ for non-linearity
ι to break symmetry

Number of rounds: 12+ 2ℓ
Keccak-f[25] has 12 rounds
Keccak-f[1600] has 24 rounds

43 / 84

Keccak Inside Keccak-f

θ for Diffusion

x

y z z

To each bit, the parities of two columns are added
Each input bit affects 11 output bits

44 / 84

Keccak Inside Keccak-f

ρ for Inter-Slice Dispersion

Each lane is translated (cyclically) by a different amount
Moves bits of a slice to 25 different slices

45 / 84

Keccak Inside Keccak-f

π for Disturbing Horizontal/Vertical Alignment

Transposition of lanes
Cycle with period 24 around a fixed origin

46 / 84

Keccak Inside Keccak-f

χ for Non-Linearity

Simple nonlinear mapping with well-understood properties
Algebraic degree 2

47 / 84

Keccak Inside Keccak-f

ι to Break Symmetry

XOR of round-dependent constant to lane in origin (x = 0, y = 0)
Without ι, the round mapping would be symmetric

Invariant to translation in the z-direction
Advantage in analysis: Matryoshka structure

Without ι, all rounds would be the same
Susceptibility to slide attacks
Defective cycle structure

48 / 84

Keccak Inside Keccak-f

The step mappings of Keccak-f

Number of rounds 12+ 2ℓ: from 12 to 24 49 / 84

Keccak Inside Keccak-f

Status of Keccak

Ke
cc

ak
-f

 [1
60

0]

0

3

6

9

12

15

18

21

24

Practical (collision) attacks up to 5 rounds
Theoretical collision attacks up to 6 rounds
[Qiao, Song, Liu, Guo 2016]
Theoretical attack up to 9 rounds (2256 time…)
[Dinur, Morawiecki, Pieprzyk, Srebrny, Straus 2014]

Round function unchanged since 2008
https://keccak.team/third_party.html

50 / 84

https://keccak.team/third_party.html

Keccak Inside Keccak-f

Another point of view

All the primitives presented so far are the result of an
incremental research,

starting from the design of hash function

It is possible to reconsider the structure of symmetric primitives

51 / 84

Pseudo-random functions

Pseudo-random function (PRF)

input

…

52 / 84

Pseudo-random functions

Stream encryption

nonce

plaintext = ciphertext

53 / 84

Pseudo-random functions

Message authentication (MAC)

plaintext

plaintext

54 / 84

Pseudo-random functions

Authenticated encryption

nonce

plaintext = ciphertext

plaintext

55 / 84

Pseudo-random functions

String sequence input and incrementality

packet #1

packet #1

FK
(
P(1)

)

56 / 84

Pseudo-random functions

String sequence input and incrementality

packet #1 packet #2

packet #1 packet #2

FK
(
P(2) ◦ P(1)

)

56 / 84

Pseudo-random functions

String sequence input and incrementality

packet #1 packet #2 packet #3

packet #1 packet #2 packet #3

FK
(
P(3) ◦ P(2) ◦ P(1)

)

56 / 84

PRF modes

Session authenticated encryption (SAE) [KT, SAC 2011]

K, N1

T(0)

A(1) P(1)

C(1) T(1)

A(2) P(2)

C(2) T(3)

A(3) P(3)

C(3) T(2)

57 / 84

PRF modes

Synthetic initialization value (SIV) of [KT, eprint 2016/1188]

A

P

FK FK

T C

Unwrap taking metadata A, ciphertext C and tag T
P← C+ FK (T ◦ A)
τ ← 0t + FK (P ◦ A)
if τ ̸= T then return error!
else return plaintext P of length |C|

Variant of SIV of [Rogaway & Shrimpton, EC 2006]
58 / 84

PRF modes

Wide block cipher (WBC), as in [KT, eprint 2016/1188]

Encipher P with K and tweak W

(L,R) ← split(P)
R0 ← R0 + HK(L ◦ 0)
L ← L + GK (R ◦W ◦ 1)
R ← R + GK (L ◦W ◦ 0)
L0 ← L0 + HK(R ◦ 1)
C ← L || R

return ciphertext C of length |P|

Pʹleft Pʹright

W

HK(... ° 0)

GK(... ° 1)

GK(... ° 0)

HK(... ° 1)

Cleft Cright

Inspired by HHFHFH of [Bernstein, Nandi & Sarkar, Dagstuhl 2016]
59 / 84

Sponge

How to build a PRF?

60 / 84

Sponge

How to build a PRF?

By icelight (flickr.com) 60 / 84

Sponge

Sponge [Keccak Team, Ecrypt 2007]

input output

outer
inner

0

0

r

c

f f f f f f

absorbing squeezing

Taking K as first part of input gives a PRF

61 / 84

Sponge

More efficient: donkeySponge [Keccak Team, DIAC 2012]

62 / 84

Sponge

Incrementality: duplex [Keccak Team, SAC 2011]

0

0

r

c

outer
inner

initialize

pad trunc

f

duplexing

σ0 Z0

pad trunc

f

duplexing

σ1 Z1

pad trunc

f

duplexing

σ2 Z2

…

63 / 84

Sponge

More efficient: MonkeyDuplex [Keccak Team, DIAC 2012]

Instances:
Ketje [Keccak Team, now extended with Ronny Van Keer, CAESAR 2014]
+ half a dozen other CAESAR submissions

64 / 84

Sponge

Consolidation: Full-state keyed duplex

±

K
f

iv

Z ¾

f

Z ¾

f

Z ¾

…

[Mennink, Reyhanitabar, & Vizar, Asiacrypt 2015]
[Daemen, Mennink & Van Assche, Asiacrypt 2017]

65 / 84

Sponge

SAE with full-state keyed duplex: Motorist [KT, Keyak 2015]

0 SUV
1

T(0)

A(1)P(1)

C(1) T(1)

P(2)

C(2) T(2)

A(3)

T(3)

66 / 84

Farfalle

How to build a parallelizable PRF?

by Peter Miller (flick.com)

67 / 84

Farfalle

Farfalle: early attempt [KT 2014-2016]

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

Similar to Protected Counter Sums [Bernstein, ”stretch”, JOC 1999]
Problem: collisions with higher-order differentials if f has low degree

68 / 84

Farfalle

Farfalle: early attempt [KT 2014-2016]

0k f

M0

1k f

M1

ik f

Mi

… …

f

k

0 Z0

f

k

1 Z1

f

k

j Zj

Similar to Protected Counter Sums [Bernstein, ”stretch”, JOC 1999]
Problem: collisions with higher-order differentials if f has low degree

68 / 84

Farfalle

Farfalle now [Keccak Team + Seth Hoffert, ToSC 2017]

pc

c

m0

k

pc

c

m1

k

…

pc

i c

mi

k

pe
e

z0

k′

pe
e

z1

k′

…

pej
e

zj

k′

K∥10∗ pb

i+2
c

pd

Input mask rolling and pc against accumulator collisions
State rolling, pe and output mask against state retrieval at output
Middle pd against higher-order DC
Input-output attacks have to deal with pe ◦ pd ◦ pc

69 / 84

Xoodoo

The permutation that fits

Keccak-p designed to fulfill SHA-3 requirements
Some proposals for lightweight crypto

Spongent, Quark, Photon..
Now new directions for designing permutations:

Efficient on different platform
Right level of security

70 / 84

Xoodoo

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,

Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD

limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

71 / 84

Xoodoo

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,

Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD

limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

71 / 84

Xoodoo

Gimli [Bernstein, Kölbl, Lucks, Massolino, Mendel, Nawaz, Schneider,

Schwabe, Standaert, Todo, Viguier, CHES 2017]

has ideal size and shape: 48 bytes in 12 words of 32 bits
fits in registers of ARM Cortex M3/M4 and suitable for SIMD

limits diffusion, see e.g. [Mike Hamburg, 2017]
no problem for nominal number of rounds: 24
not clear how many rounds needed in Farfalle

71 / 84

Xoodoo

Xoodoo · [noun, mythical] · /zu: du:/ · Alpine mammal
that lives in compact herds, can survive avalanches and is
appreciated for the wide trails it creates in the landscape.
Despite its fluffy appearance it is very robust and does not
get distracted by side channels.

72 / 84

Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!

73 / 84

https://github.com/XoodooTeam/Xoodoo

Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!

73 / 84

https://github.com/XoodooTeam/Xoodoo

Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!

73 / 84

https://github.com/XoodooTeam/Xoodoo

Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!

73 / 84

https://github.com/XoodooTeam/Xoodoo

Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!

73 / 84

https://github.com/XoodooTeam/Xoodoo

Xoodoo

Xoodoo [Keccak team with Seth Hoffert and Johan De Meulder]

https://github.com/XoodooTeam/Xoodoo

384-bit permutation
Main purpose: usage in Farfalle: XooPRF

Efficient on wide range of platforms

But also for
small-state authenticated encryption, Ketje style
sponge-based hashing, …

Keccak-p philosophy ported to Gimli dimensions 3× 4× 32!

73 / 84

https://github.com/XoodooTeam/Xoodoo

Xoodoo

Xoodoo state

x

y

z

state

State: 3 horizontal planes each consisting of 4 lanes

74 / 84

Xoodoo

Xoodoo state

x

y

z

plane

State: 3 horizontal planes each consisting of 4 lanes

74 / 84

Xoodoo

Xoodoo state

x

y

z

lane

State: 3 horizontal planes each consisting of 4 lanes

74 / 84

Xoodoo

Xoodoo state

x

y

z

column

State: 3 horizontal planes each consisting of 4 lanes

74 / 84

Xoodoo

Xoodoo round function

θ

ρwest

χ

ρeast

Iterated: nr rounds that differ only by round constant

75 / 84

Xoodoo

Nonlinear mapping χ

Effect on one plane:

0

1

2

complement

χ as in Keccak-p, operating on 3-bit columns
Involution and same propagation differentially and linearly

76 / 84

Xoodoo

Mixing layer θ

+ =

column parity θ-effect

fold

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel

77 / 84

Xoodoo

Mixing layer θ

+ =

column parity θ-effect

fold

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel

77 / 84

Xoodoo

Mixing layer θ

+ =

column parity θ-effect

fold

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel

77 / 84

Xoodoo

Mixing layer θ

+=

column parity

unfold

θ-effect

Column parity mixer: compute parity, fold and add to state
good average diffusion, identity for states in kernel

77 / 84

Xoodoo

Plane shift ρeast

0

1

2
shift (2,8)

shift (0,1)

After χ and before θ

Shifts planes y = 1 and y = 2 over different directions

78 / 84

Xoodoo

Plane shift ρwest

0

1

2
shift (0,11)

shift (1,0)

After θ and before χ

Shifts planes y = 1 and y = 2 over different directions

79 / 84

Xoodoo

Xoodoo pseudocode
nr rounds from i = 1− nr to 0, with a 5-step round function:

θ :
P← A0 + A1 + A2
E← P ≪ (1, 5) + P ≪ (1, 14)
Ay ← Ay + E for y ∈ {0, 1, 2}

ρwest :
A1 ← A1 ≪ (1, 0)
A2 ← A2 ≪ (0, 11)

ι :
A0,0 ← A0,0 + rci

χ :
B0 ← A1 · A2
B1 ← A2 · A0
B2 ← A0 · A1
Ay ← Ay + By for y ∈ {0, 1, 2}

ρeast :
A1 ← A1 ≪ (0, 1)
A2 ← A2 ≪ (2, 8)

80 / 84

Xoodoo

Xoodoo software performance

width cycles/byte per round
ARM Intel

bytes Cortex M3 Skylake
Keccak-p[1600,nr] 200 2.44 0.080
ChaCha 64 0.69 0.059
Gimli 48 0.91 0.074∗
Xoodoo 48 1.20 0.083

∗ on Intel Haswell

81 / 84

Xoodoo

Cryptographic framework with a single permutation

Network and security protocols require a complete set of
symmetric primitives (hashing, AE, KDF, PRNG...)
Keccak was already supplying most of the primitives [KT 2008]
Duplex for AE and PRNG: the missing pieces [KT 2010]
A first informal proposal of framework for IoT [KT CIoT 2012]
Blinker [Saarinen, CT-RSA 2014]
STROBE [Hamburg, ePrint 2017]
DISCOCRYPTO [Wong, Black Hat Europe 2017]

82 / 84

Conclusions

What textbooks and intro’s should say from now on :-)

Symmetric cryptographic primitives:
Permutations
Block ciphers
Stream ciphers
Hash functions

And their modes-of-use
Picture by Sébastien Wiertz

83 / 84

Conclusions

Questions?

84 / 84

	Introduction
	Short definition
	The mainstream in hash functions
	Internals
	A crisis of confidence

	The SHA-3 contest
	NIST calls out for help
	The deal
	Time schedule

	Hash function security requirements
	Traditional requirements
	Additional requirements
	The challenge of expressing security claims
	Random oracles (RO)
	The finite memory

	Sponge functions and Permutation-based primitives
	The sponge construction
	Straightforward applications

	Keccak
	The beginning
	Defining Keccak
	Inside Keccak-f

	Pseudo-random functions
	PRF modes
	Sponge
	Farfalle
	Xoodoo
	Conclusions

