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Introduction: What is Secure Multiparty Computation

I Computation: a known function is evaluated

I Multiparty: a set of parties want to evaluate this function

using their (private) inputs

I Secure: each party's input remains secret

MPC allows a set of parties to joinly compute a function on their

secret inputs.
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Introduction: An Example (Yao 1982)

Two millionaires want to know who has more money without

revealing their assets.

I Parties: two millionaires Alice and Bob

I Function: XA > XB ?

I Inputs: assets XA and XB

Trivial solution: a trusted third party.

It gets XA and XB and announces who is the richer.



Introduction: Trusted Third Party

Unfortunately a trusted third party doesn't always exists. We would

like a solution with the same security guarantees, but without using

any trusted party.

To compute on private data there are two main solutions:

I Homomorphic encryption

I Multiparty Computation
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Introduction: Formalization of the Model

An MPC protocol is a set of instructions for each party.

These instructions can be local computations and exchanges of

data.

The output can be revealed to all or some of the players.

Formally:

I Parties: P1, . . . ,Pn

I Inputs: x1, . . . , xn
I Public function: f

I Output: y = f (x1, . . . , xn)
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Introduction: Security Properties

I Input privacy: the execution of the protocol should not give

any information about the private data of the parties, except

for what is revealed by the output of the function.

I Correctness: depending on the MPC protocol, even if a subset

of parties are colluding sharing information or deviating by the

protocol, they should not be able to force honest parties to

output an incorrect result.
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Introduction: Types of Security

MPC protocols can di�er in the type of security guaranteed. There

are 3 main types:

I Passive security: security properties are guaranteed with

semi-honest ( or �honest but curious�) adversaries, which

follow the rules of the protocol but wanting to extract more

information from their observed data.

I Active security: even if adversaries deviate from the protocol

and try to obtain information about honest parties' inputs, the

security properties are guaranteed. This type of adversaries are

called malicious.

I Covert security: between passive and active security. Quite

informal de�nition: �secure enough�.
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Introduction: Boolean MPC and Arithmetic MPC

There are two main classes of MPC protocols:

I Boolean MPC: the function is represented by a boolean circuit.

There are two parties, the circuit constructor A and the circuit

evaluator B . A encrypts or garbles the circuit and sends it to

B that evaluates it with his input and learns the output. This

protocol is called Garbled Circuit.

I Arithmetic MPC: inputs are shared using some secret sharing

scheme, then the function is computed on this sharings, using

addition, multiplication and other arithmetic operations.
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Boolean MPC: Garbled Circuits

Every function can be represented as a boolean circuit with AND,

OR and NOT gates. Gates are connected by three types of wires:

input wires, output wires and intermediate wires.

Ingredients:

I Double key simmetric encryption: given a plaintext m and two

keys k1, k2, we denote by Ek1,k2(m) the encryption of m with

keys k1, k2. For example we can use

Ek1,k2(m) = AESk1(AESk2(m)).
In order to check the validity of a plaintext we can add some

redundancy.

I Oblivious Transfer (OT)
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Boolean MPC: Oblivious Transfer

An oblivious transfer protocol is an interactive protocol between

two parties: a Sender and a Receiver, each providing some inputs.

I The Sender inputs a couple of bits (or numbers) m0,m1

I The input of the Receiver is a single bit b.

I At the end of the protocol, the Receiver gets the value mb

I The Sender knows nothing about b and the Receiver knows

nothing about the other value m1−b
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Boolean MPC: Circuit Construction

Alice constructs the �plain� boolean circuit for the function f . Then
Alice garbles it:

I For each wire Wi she randomly chooses two secret values: w0
i

for the value 0 and w1
i for 1. These are called garbled values

for 0 and 1.

I Given a truth table for the gates G Alice construct a garbled

truth table encrypting the garbled value of the output wire

using the two garbled values of the inputs as keys.

I For every output wire, Alice announces the correspondence

between w i
j and i so Bob can learn the output.

I Alice sends the garbled values of every truth table to Bob.
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Boolean MPC: Example of Garbled Truth Table

OR gate

W0 W1 W

0 0 0

0 1 1

1 0 1

1 1 1

W0 W1 W Garbled value

w0
0 w0

1 w0 Ew0

0
,w0

1

(w0)

w0
0 w1

1 w1 Ew0

0
,w1

1

(w1)

w1
0 w0

1 w1 Ew1

0
,w0

1

(w1)

w1
0 w1

1 w1 Ew1

0
,w1

1

(w1)



Boolean MPC: Evaluating the Circuit

I Using an oblivious transfer, Bob asks Alice the garbled values

for its secret inputs.

I Starting from the input wires, for each gate Bob decrypts the

values in the garbled truth table, �nding the valid plaintext

related to the output wire of the gate.

I Bob continues with the next gate.

I When Bob has a garbled value Z for an output wire, he learns

the output bit looking at values (Z0,Z1) and checking if

Z = Z0 or Z = Z1.
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Boolean MPC: Example of Evaluation of a Gate

I Gate values: X1,X2,X3,X4.

I Bob has the two garbled values of the inputs of this gate:

w1,w2.

I He computes Dw1,w2
(Xi ) for each i .

I When he �nds a valid plaintext, he gets the garbled value

associated to the output wire of this gate.
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Arithmetic MPC

If the function to be evaluated can be easily expressed in an

arithmetic form, then it is convenient to use an MPC protocol

based on secret sharing. This kind of protocols usually works on

�nite algebraic structures (�nite �elds or rings).

There are a lot of secret sharing schemes, the most used are:

I Additive secret sharing;

I Shamir secret sharing.
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Arithmetic MPC: Additive Secret Sharing

Suppose n players P1, . . . ,Pn.

If a player P wants to share its secret input x , he randomly

generates n shares x (j) such that

x =
n∑

j=1

x (j)

Then P sends x (j) to player Pj .

The shared value of x is denoted as

[[x ]] = (x (1), . . . , x (n))

This means that every player has a little part of x but nobody

knows the actual value.



Arithmetic MPC: Example of Additive Secret Sharing

Suppose 5 players P1, . . . ,P5. A dealer wants to share the secret

s = 6 ∈ F11.
I He generates 4 random elements of F11

s(1) = 5, s(2) = 3, s(3) = 8, s(4) = 0

I Then he sets

s(5) = s −
4∑

i=1

s(i) = 6− 5 = 1

and distributes s(i) to Pi .

I All players can reconstruct the secret sharing their values to get

s =
5∑

i=1

s(i)
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Arithmetic MPC: Shamir Secret Sharing Scheme

Suppose n players P1, . . . ,Pn and t ≤ n. A secret x of the player P
can be shared as follow:

I P secretly chooses a random polynomial f of degree t − 1

such that f (0) = x .

I P gives to the player Pi the couple (i , f (i)).

I If at least t player share their shares, using Lagrange

interpolation they can reconstruct f and compute x = f (0).

I The number t is called threshold.

The shared value of x is denoted as

[[x ]] = ((1, f (1)), . . . , (n, f (n)))
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Arithmetic MPC: Lagrange Interpolation

Given a set of points {(x1, y1), . . . , (xr , yr )} such that xi 6= xj for
every i 6= j , then exists a unique polinomial f of degree ≤ r − 1

such that f (xi ) = yi for each i .
The polynomial f can be constructed as follows:

I De�ne

δi (x) =

∏r
j=1
j 6=i

(x − xj)∏r
j=1
j 6=i

(xi − xj)

we see that for each i δi (xi ) = 1 and δi (xj) = 0 if i 6= j .

I Then set

f (x) =
r∑

i=1

δi (x)yi



Arithmetic MPC: Example of Shamir Secret Sharing

Suppose 5 players P1, . . . ,P5, we work on F11. A dealer want to

share the secret s = 3 with the threshold t = 3.

I He chooses a random polynomial such that f (0) = s = 3:

f (x) = 5x2 + 10x + 3

I He gives (i , f (i)) to the i-th player:

(1, 7), (2, 10), (3, 1), (4, 2), (5, 2)

I If P1,P4,P5 want to learn the secret, they use Lagrange

interpolation and �nd f and then s = 3.



Arithmetic MPC: Arithmetic with Additive Secret Sharing

Suppose n players have [[x ]] = (x (i))ni=1 and [[y ]] = (y (i))ni=1. They

want to compute the shared value of the sum: [[z ]] = [[x + y ]]

I Each player Pi sets z
(i) = x (i) + y (i).

I In fact:

z =
n∑

i=1

(x (i) + y (i)) =
n∑

i=1

x (i) +
n∑

i=1

y (i) = x + y

I This is an operation without communication.



Arithmetic MPC: Arithmetic with Additive Secret Sharing

If players have [[x ]] and they want to compute [[z ]] = [[cx ]] for any
public c :

I Each player Pi sets z
(i) = cx (i)

I In fact:

z =
n∑

i=1

cx (i) = c
n∑

i=1

x (i) = cx

I This is another communication-free operation.



Arithmetic MPC: Arithmetic with Additive Secret Sharing

To perform a multiplication there are some di�erent methods. For

example the SPDZ protocol uses the Beaver's trick with some

precomputed �multiplication triples�:

([[a]], [[b]], [[c]]) such that ab = c

How those triples are generated depends on the MPC protocol

used, SPDZ bases his triple generation on homomorphic encryption.
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Arithmetic MPC: Arithmetic with Additive Secret Sharing

Suppose parties have [[x ]] and [[y ]].
To compute [[z ]] = [[xy ]]:

I Players compute [[ρ]] = [[x ]]− [[a]] and reveal ρ

I Players compute [[σ]] = [[y ]]− [[b]] and reveal σ

I The output is [[z ]] = [[c]] + [[ρb]] + [[σa]] + ρσ
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Arithmetic MPC: Arithmetic with Additive Secret Sharing

Summarizing:

I additions and scalar multiplications are �free� operations in

terms of communication

I performing a multiplication costs 1 round of communication

I The complexity of a function to be evaluated in MPC is linked

to the number of multiplications



Arithmetic MPC: A Simple Example (1)

Two parties, P1 and P2 want to compute f (x1, x2) = x1x2 + x1 in

F7. Suppose x1 = 2 and x2 = 5.

I They share their inputs. P1 generates a random x
(1)
1 = 3 and

sets x
(2)
1 = 2− 3 = 6. P1 sends x

(2)
1 to P2, then we have:

[[x1]] = [[2]] = (3, 6)

I P2 does the same, he generates x
(1)
2 = 1 and sets

x
(2)
2 = 5− 1 = 4 and sends x

(1)
2 to P1. Then

[[x2]] = [[5]] = (1, 4)
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Arithmetic MPC: A Simple Example (2)

Now they want to compute [[x1x2]]. They pick a precomputed

multiplication triple:

([[a]], [[b]], [[c]]) = ([[2]], [[6]], [[5]])

such that:

[[2]] = (1, 1), [[6]] = (4, 2), [[5]] = (0, 5)



Arithmetic MPC: A Simple Example (3)

Multiplication subprotocol:

I P1 computes

ρ(1) = x
(1)
1 − a(1) = 2

σ(1) = x
(1)
2 − b(1) = 4

I P2 computes

ρ(2) = x
(2)
1 − a(2) = 5

σ(2) = x
(2)
2 − b(2) = 2

I They reveal the shares of ρ = 0 and σ = 6.

I P1 sets z(1) = c(1) + ρb(1) + σa(1) + ρσ = 6

I P2 sets z(2) = c(2) + ρb2(2) + σa(2) + ρσ = 4
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Arithmetic MPC: A Simple Example (4)

Now we have [[z ]] = (6, 4) = [[3]] = [[2 · 5]]. To obtain the output

of f (2, 5) we need to compute [[z + x1]].

I P1 sets w (1) = z(1) + x
(1)
1 = 2

I P2 sets w (2) = z(2) + x
(2)
1 = 3

I Now they excange their shares and learn the output

w = 2 + 3 = 5, in fact f (2, 5) = 5.
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Arithmetic MPC: O�ine Phase vs Online Phase

Some protocols split computation in two parts:

I A preprocessing phase that depends on the function and is

independent on the inputs. It is called �o�ine phase�.

I An evaluation phase: players uses their inputs and compute

the function, this is called �online phase�.

For example in the SPDZ protocol, the o�ine phase is represented

by the triples generation, while the online phase by the actual

computation of the function f .
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Active Security: How to Prevent Active Attacks?

How to deal with malicious adversaries that can deviate from the

protocol? When the protocol says �send x � they could send y or

some crafted values.

There are some solutions, we see how the SPDZ protocol solves

this problem.



Active Security: MAC Keys

Each player Pi generates a MAC key ∆(i). We de�ne

∆ =
n∑

i=1

∆(i)

Now shares of the value x ∈ F are of the form

[[x ]] = (x (1), . . . , x (n)︸ ︷︷ ︸
shares

,m(x)(1), . . . ,m(x)(n)︸ ︷︷ ︸
MAC shares

,∆(1), . . . ,∆(n)︸ ︷︷ ︸
MAC keys

)

Such that:

x =
n∑

i=1

x (i), x ·∆ =
n∑

i=1

m(x)(i)
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Active Security: MAC Keys

If a malicious player sends the wrong values for x (i), he can't

modify his MAC shares m(x)(i) to be consistent with the new value

since he has not other MAC shares and ∆.

When the function is evaluated and players hold the shared output,

before revealing it to all parties, there is a general MAC check on

all the values opened during the protocol.

If this check passes, then the output is revealed and accepted.
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Real-world Applications

Since 2008 there were a lot of real-world applications of MPC, for

example:

I Danish sugar beet auction

I Benchmarking

I Satellite collisions

I Machine learning on private data



Libraries

There are a lot of libraries that implement some MPC

functionalities. Some examples:

I SCALE-MAMBA

I MP-SPDZ

I libSCAPI

I Fresco

I ...and many other
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Thank you.

Questions?
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