Why you should not even think to use Ore algebras in Cryptography

> Michela Ceria joint work with T. Moriarty and A. Visconti

De Cifris, Augustae Taurinorum, 21/05/2020

Generalized Stickel's Diffie-Hellman protocols

STICKEL

2005

Non-abelian finite group G; $P, Q \in G, PQ \neq QP$, all such data being **public**.

ALICE

Alice picks secretly a pair of integers (P_A, Q_A) . Then sends Bob $A = P^{P_A}Q^{Q_A}$

Вов

Bob chooses another pair of the same fashion (P_B, Q_B) . Then sends Alice $B = P^{P_B}Q^{Q_B}$.

Secret

$$P^{P_A}BQ^{Q_A} = P^{P_A+P_B}Q^{Q_A+Q_B} = P^{P_B}AQ^{Q_B}$$

WHAT IS G?

Stickel proposed to use the group of the invertibles matrices of order *n* over a finite field $G := GL_n(\mathbb{F})$, but some weaknesses of this choice was discussed by Shpilrain who considered more secure working on the set $M_n(R)$ of all matrices of order *n* over a finite ring *R*.

SHPILRAIN

Data

Finite ring R; $P, Q \in M_n(R), PQ \neq QP$; all these data are **public**.

ALICE

Alice picks secretly a pair of commutative polynomials $(P_A, Q_A) \in R[X] \times R[X]$. Then she sends Bob $A = P_A(P)Q_A(Q)$

Вов

Bob chooses another pair of the same fashion $(P_B, Q_B) \in R[X] \times R[X]$. Then he sends Alice $B = P_B(P)Q_B(Q)$.

Secret

$$P_A(P)BQ_A(Q) = P_A(P)P_B(P)Q_B(Q)Q_A(Q) = P_B(P)P_A(P)Q_A(P)Q_B(P) = P_B(P)AQ_B(Q).$$

Mullan successfully mounted a linear algebra attack on it.

MAZA - MONICO - ROSENTHAL

Data

Finite semiring R with nonempty center C, not embeddable into a field; $L, P, Q \in M_n(R)$; all these data are public.

ALICE

Alice picks secretly a pair of commutative polynomials $(P_A, Q_A) \in C[X] \times C[X]$; then sends Bob $A = P_A(P)LQ_A(Q)$

Вов

Bob chooses another pair of the same fashion $(P_B, Q_B) \in C[X] \times C[X]$; then sends Alice $B = P_B(P)LQ_B(Q)$.

Secret

$$P_A(P)BQ_A(Q) = P_A(P)P_B(P)LQ_B(Q)Q_A(Q) = P_B(P)P_A(P)LQ_A(P)Q_B(P) = P_B(P)AQ_B(Q).$$

CAO - DONG -WANG

Diffie-Hellman-like protocol, which evaluates univariate polynomials over elements in an agreed non-commutative ring R.

ALICE

Alice picks $a, b \in R, m, n \in \mathbb{N}, f \in \mathbb{Z}[X]$ and sends to Bob m, n, a, b and $A := f(a)^m b f(a)^n$.

Вов

Bob chooses $h \in \mathbb{Z}[X]$ and sends Alice $A := h(a)^m bh(a)^n$.

Secret

$$f(a)^m Bf(a)^n = f(a)^m h(a)^m bh(a)^n f(a)^n = h(a)^m Ah(a)^n.$$

Now on Ore extensions

ORE EXTENSION

- $\mathbf{k} = \mathbb{F}_{q}, \ \theta \in Aut(\mathbf{k})$:
 - $\mathbf{k}[x,\theta] := \{a_0 + a_1x + ... + a_nx^n : n \in \mathbb{N}, a_i \in \mathbf{k}, \forall i \in \{0,...,n\}\}$

Non commutative: $xa = \theta(a)x, \forall a \in \mathbf{k}$. Factorization not unique.

There are **non-central elements**, commuting together.

EXAMPLE

 $\mathbf{k}[x,\theta] = \mathbb{F}_4[x,\theta] = \mathbb{F}_2[\alpha][x,\theta], \ \theta \ \text{the Frobenius automorphism. For}$ $q_1 = x + \alpha \ \text{and} \ q_2 = x^2 + x + \alpha: \ q_1q_2 = q_2q_1 = x^3 + \alpha^2x^2 + 1.$

FIRST IDEA

Alice and Bob want to share a secret on an insecure channel via a Diffie-Hellman-like cryptosystem.

PUBLIC DATA

Construct $S \subset \mathbf{k}[x, \theta]$ of **non-central** but **mutually commutative** polynomials. Take a security parameter d and $Q \in \mathbf{k}[x, \theta]$ of degree d.

FIRST IDEA

ALICE

Takes $L_A, R_A \in S$ (degree d) and compute $P_A = L_A Q R_A$. Send it to Bob.

Вов

Takes $L_B, R_B \in S$ (degree d) and compute $P_B = L_B Q R_B$. Send it to Alice.

ALICE

Computes $P = L_A P_B R_A$

Вов

Computes $P = L_B P_A R_B$

ELEMENTS IN S COMMUTE!

 $P = L_A P_B R_A = L_A L_B Q R_B R_A = L_B L_A Q R_A R_B = L_B P_A R_B$

CRYPTANALYSIS

Ore polynomials form a *left and right Euclidean domain*. So left and right Euclidean division is possible. Moreover it is possible to compute **left/right GCDs**.

GCD computation allows to attack the Diffie-Hellman-like polynomial.

BURGER-HEINLE: MULTIVARIATE ORE POLYNOMIALS

The context of their Diffie-Hellman-like protocol is that of multivariate Ore extensions.

For multivariate Ore extensions there is **no left or right GCD** so the attack above is not feasible.

The protocol

Alice and Bob publicly choose a multivariate Ore extension S with constant subring R, $L \in S$ non-central and two subsets of C_I , $C_r \subset S$ whose elements do not commute with L, with

$$C_{l} = \{f(P): f = \sum_{i=0}^{m} f_{i}x^{i} \in R[x], m \in \mathbb{N}, f_{0} \neq 0\}$$

$$C_r = \{f(Q): f = \sum_{i=0}^m f_i x^i \in R[x], m \in \mathbb{N}, f_0 \neq 0\}$$

and $P, Q \in S$ non commuting with L.

THE PROTOCOL

ALICE Chooses $(P_A, Q_A) \in C_I \times C_r$

$\frac{\text{BOB}}{\text{Chooses}}(P_B, Q_B) \in C_I \times C_r$

ALICE

Sends Bob $A = P_A L Q_A$

Вов

Sends Alice $B = P_B L Q_B$

The protocol

$\frac{\text{ALICE}}{\text{Computes } P_A B Q_A}$

$\frac{\text{BOB}}{\text{Computes } P_B A Q_B}$

The shared secret

 $P_A B Q_A = P_A P_B L Q_B Q_A = P_B P_A L Q_A Q_B = P_B A Q_B$

Iterated Ore extensions with power substitutions

EFFECTIVELY GIVEN RINGS

Let R be a (not necessarily commutative) ring with identity $\mathbf{1}_R$ and \mathcal{A} another (not necessarily commutative) ring with identity $\mathbf{1}_{\mathcal{A}}$ which is a left module on R.

We can consider ${\mathcal A}$ to be **effectively given** when we are given

- sets $\overline{\mathbf{v}} := \{x_1, \dots, x_j, \dots\}$, $\overline{\mathbf{V}} := \{X_1, \dots, X_i, \dots\}$, which are *countable* and
- $\overline{\mathbf{Z}} := \overline{\mathbf{v}} \sqcup \overline{\mathbf{V}} = \{x_1, \ldots, x_j, \ldots, X_1, \ldots, X_i, \ldots\};$
- rings $\mathcal{R} \subset \mathcal{Q}$;
- surjective maps $\pi : \mathcal{R} \twoheadrightarrow \mathcal{R}$ and $\Pi : \mathcal{Q} \twoheadrightarrow \mathcal{A}$, with

$$\Pi(x_j) = \pi(x_j) \mathbf{1}_{\mathcal{A}}, \text{ for each } x_j \in \overline{\mathbf{v}},$$

so that $\Pi(\mathcal{R}) = \{r\mathbf{1}_{\mathcal{A}} : r \in R\} \subset \mathcal{A}.$

Thus, denoting $\mathcal{I} := \ker(\Pi) \subset \mathcal{Q}$ and $I := \mathcal{I} \cap \mathcal{R} = \ker(\pi) \subset \mathcal{R}$, we have $\mathcal{A} = \mathcal{Q}/\mathcal{I}$ and $R = \mathcal{R}/I$; moreover we can assume, without loss of generality, that $R \subset \mathcal{A}$. Further, when considering \mathcal{A} as effectively given in this way, we explicitly require the Ore-like requirement that $\forall X_i \in \overline{\mathbf{V}}, x_j \in \overline{\mathbf{v}}$,

$$X_i x_j \equiv \sum_{l=1}^{\prime} \pi(a_{lij}) X_l + \pi(a_{0ij}) \mod \mathcal{I}, a_{lij} \in \mathbb{Z} \langle \overline{\mathbf{v}} \rangle_{\mathcal{I}}$$

If not, $\mathbb{Z}\langle x, y \rangle$ as left $\mathbb{Z}[x]$ -module requires

$$egin{aligned} X_i &:= x^i y \quad \mathbb{Z}\langle x,y
angle \cong \mathbb{Z}[x] \langle X_0, X_1, \dots, X_i, \dots
angle / \mathbb{I} \left(X_i x - X_{i+1}
ight) \ & X_0 > X_1 > X_2 > \cdots X_i > X_{i+1} \cdots \end{aligned}$$

If we fix

• a term-ordering < on $\langle \overline{\mathbf{Z}} \rangle$

we can assume ${\mathcal I}$ to be given via

• its bilateral Gröbner basis G w.r.t. <

and, if < satisfies $X_i > t$ for each $t \in \langle \overline{\mathbf{v}} \rangle$ and $X_i \in \overline{\mathbf{V}}$, also I is given via

• its bilateral Gröbner basis $G_0 := G \cap \mathcal{R}$ w.r.t. <. For each $X_i \in \overline{\mathbf{V}}, x_j \in \overline{\mathbf{v}}, f_{ij} := X_i x_j - \sum_{l=1}^i a_{lij} X_l - a_{0ij} \in \mathcal{I} \subset \mathcal{Q}$. If we further require that < satisfies

$$X_i x_j = {f T}(f_{ij})$$
 for each $X_i \in \overline{f V}, x_j \in \overline{f v},$

and denote $C := \{f_{ij} : X_i \in \overline{\mathbf{V}}, x_j \in \overline{\mathbf{v}}\}$ we have

- $G_0 \sqcup C \subset G$,
- \mathcal{A} is generated as *R*-module by $\Pi(\langle \overline{\mathbf{V}} \rangle)$ and,
- as \mathbb{Z} -module, by a subset of $\{\upsilon\omega: \upsilon \in \langle \overline{\mathbf{v}} \rangle, \omega \in \langle \overline{\mathbf{v}} \rangle \}$.

SZEKERES NOTATION

We further denote

- for $m \in \mathbb{N}$, $\langle \overline{\mathbf{Z}} \rangle^{(m)} := \{ t \mathbf{e}_i : t \in \langle \overline{\mathbf{Z}} \rangle, 1 \le i \le m \}.$
- for each $\omega \in \langle \overline{\mathbf{V}} \rangle$,

 $\mathcal{I}_{\omega} := \{ r \in \mathcal{R} : \text{ exists } h \in \mathcal{Q}, \mathbf{T}(h) < \omega, r\omega + h \in \mathcal{I} \} \supset I = \mathcal{I} \cap \mathcal{R}$

•
$$R_{\omega} = \mathcal{R}/\mathcal{I}_{\omega};$$

• $L(\mathcal{I}) := \{\omega \in \langle \overline{\mathbf{V}} \rangle : \mathcal{I}_{\omega} = R\},$
• $\mathcal{B} = \langle \overline{\mathbf{V}} \rangle \setminus L(\mathcal{I}) \subset \langle \overline{\mathbf{V}} \rangle,$

W.r.t. a term-ordering < on \mathcal{B} satisfying the conditions above and a well-ordering on \mathcal{B}^m (which we will still denote <), satisfying

$$\omega_1 < \omega_2 \implies \omega_1 t < \omega_2 t, t\omega_1 < t\omega_2 orall t \in \mathcal{B}^{(m)}, \omega_1, \omega_2 \in \mathcal{B}.$$

each non-zero element $f \in \mathcal{A}^m$ has its canonical representation

$$f:=\sum_{j=1}^{s}c(f,t_{j}\mathbf{e}_{\iota_{j}})t_{j}\mathbf{e}_{\iota_{j}},$$

 $t_j \in \mathcal{B}, c(f, t_j \mathbf{e}_{\iota_j}) \in R_{t_j} \setminus \{0\}, 1 \le \iota_j \le m$, with $t_1 \mathbf{e}_{\iota_1} > t_2 \mathbf{e}_{\iota_2} > \cdots > t_s \mathbf{e}_{\iota_s}$ and we denote, $\operatorname{Supp}(f) := \{t_j \mathbf{e}_{\iota_j} : 1 \le j \le m\}$ the *support* of f, $\mathbf{T}_{<}(f) := t_1 \mathbf{e}_{\iota_1}$ its *maximal term*, $\operatorname{lc}_{<}(f) := c(f, t_1 \mathbf{e}_{\iota_1})$ its *leading coefficient* and $\mathbf{M}_{<}(f) := c(f, t_1 \mathbf{e}_{\iota_1})t_1 \mathbf{e}_{\iota_1}$ its *maximal monomial*. If we denote $M(\mathcal{A}^m) := \{ ct \mathbf{e}_i \mid t \in \mathcal{B}, c \in R_t \setminus \{0\}, 1 \le i \le m \}$, the unique finite representation can be reformulated

$$f = \sum_{ au \in \mathrm{Supp}(f)} m_{ au}, \ m_{ au} = c(f, au) au$$

as a sum of elements of the *monomial set* $M(\mathcal{A}^m)$.

Specializing

- $\overline{\mathbf{X}} := \{X_1, \dots, X_n\}, \overline{\mathbf{Y}} := \{Y_1, \dots, Y_m\}, \overline{\mathbf{V}} := \overline{\mathbf{X}} \sqcup \overline{\mathbf{Y}}, \langle \overline{\mathbf{V}} \rangle$ the set of all words on the alphabet $\overline{\mathbf{V}}$,
- $\mathcal{Q} := R\langle \overline{\mathbf{V}} \rangle;$
- $\Gamma := \{X_1^{d_1} \cdots X_n^{d_n} Y_1^{e_1} \cdots Y_m^{e_m} \mid (d_1, \dots, d_n, e_1, \dots, e_m) \in \mathbb{N}^{n+m}\},\$
- $\mathcal{T} := \{X_1^{d_1} \cdots X_n^{d_n} \mid (d_1, \ldots, d_n) \in \mathbb{N}^n\},\$
- $\mathcal{T}_j := \{X_1^{d_1} \cdots X_j^{d_j} \mid (d_1, \dots, d_j) \in \mathbb{N}^j\} \subset \mathcal{T}$ for each $j : 1 \leq j \leq n$,
- $\mathcal{V} := \{Y_1^{e_1} \cdots Y_m^{e_m} \mid (e_1, \ldots, e_m) \in \mathbb{N}^m\},\$
- the lexicographical (*id est* alphabetical) ordering < on ⟨**V**⟩, induced by X₁ < ... < X_n < Y₁ < ... < Y_m, and its restriction, still denoted <, on the (commutative) terms T;

Specializing

- for each $i, j : 1 \le i < j \le n$, $f_{ij} := X_j X_i c_{ij} X_i X_j d_{ij}$, c_{ij} an invertible element in R, $d_{ij} \in R[\mathcal{T}_{j-1}]$,
- for each $j, l: 1 \le j \le n, 1 \le l \le m$, $f_{jl} := Y_l X_j - c_{jl} v_{jl} X_j Y_l - d_{jl}$, c_{jl} an invertible element in R, $v_{jl} \in \mathcal{T}_j$, $d_{ij} \in R[\mathcal{T}][\mathcal{V}_{l-1}]$,
- for each $l, k : 1 \le l < k \le m$, $f_{lk} := Y_k Y_l c_{lk} Y_l Y_k d_{lk}$, c_{lk} an invertible element in $R, d_{lk} \in R[\mathcal{V}_{k-1}]$;
- the binary operation \circ on Γ defined by

$$\begin{cases} X_j \circ X_i &= X_i X_j & \text{ for each } i, j: 1 \le i < j \le n, \\ Y_l \circ X_j &= v_{jl} X_j Y_l & \text{ for each } j: 1 \le j \le n, l: 1 \le l \le m, \\ Y_k \circ Y_l &= Y_l Y_k & \text{ for each } l, k: 1 \le l < k \le m; \end{cases}$$

•
$$C^L := \{f_{ij}, 1 \le i < j \le n\}, C^R := \{f_{lk}, 1 \le l < k \le m\},$$

• $C := C^L \cup \{f_{il}, 1 \le j \le n, 1 \le l \le m\} \cup C^R;$

A := R⟨V⟩/I₂(C): iterated Ore extensions with power substitutions.

Denote, for the semigroup (Γ, \circ) , $\Gamma^{(u)}$ the sets

$$\Gamma^{(u)} := \{\gamma e_i, \gamma \in \Gamma, 1 \le i \le u\}, u \in \mathbb{N},$$

endowed with no operation except the natural action of $\boldsymbol{\Gamma}$

$$\Gamma \times \Gamma^{(u)} \times \Gamma \to \Gamma^{(u)} : (\delta_l, \gamma, \delta_r) \mapsto \delta_l \circ \gamma \circ \delta_r, \forall \delta_l, \delta_r \in \Gamma, \gamma \in \Gamma^{(u)}.$$

Given a Γ -pseudovaluation

$$\mathbf{T}(\cdot): \mathcal{A} \setminus \{\mathbf{0}\} \mapsto \mathcal{B} \subset \Gamma: f \to \mathbf{T}(f),$$

a module $M \subset \mathcal{A}^u$ and the $\Gamma^{(u)}$ -pseudovaluation

$$\mathbf{T}(\cdot): M \setminus \{0\} \mapsto \mathcal{B}^{(u)} \subset \Gamma^{(u)}: f \to \mathbf{T}(f),$$

and we define

•
$$F_{\gamma}(M) := \{f \in M : \mathbf{T}(f) \le \gamma\} \cup \{0\} \subset M$$
, for each $\gamma \in \Gamma^{(u)}$;
• $V_{\gamma}(M) := \{f \in M : \mathbf{T}(f) < \gamma\} \cup \{0\} \subset M$, for each $\gamma \in \Gamma^{(u)}$;

•
$$G_{\gamma}(M) := F_{\gamma}(M)/V_{\gamma}(M)$$
, for each $\gamma \in \Gamma^{(u)}$;

•
$$G(M) := \bigoplus_{\gamma \in \Gamma^{(u)}} G_{\gamma}(M).$$

•
$$\mathcal{L}: M \mapsto G(M)$$
 map s.t. $\mathcal{L}(0) = 0$ and, for each $f \in M, f \neq 0, t := \mathbf{T}(f), \mathcal{L}(f)$ class of $f \mod V_t(M)$.

Associated graded rings and modules

We call

- associated graded ring of A the left R-module G(A) which is a Γ-graded ring, and
- associated graded module of M the left R-module G(M), which is a Γ^(u)-graded G(A)-module.

$$\begin{split} &\mathcal{B} := \{ \omega \in \langle \overline{\mathbf{V}} \rangle : \mathcal{I}_{\omega} \neq R \} \subset \Big\{ \upsilon \omega : \upsilon \in \langle \overline{\mathbf{v}} \rangle, \omega \in \langle \overline{\mathbf{V}} \rangle \Big\} \\ &\text{Spear's intuition that a Buchberger Theory defined in a ring can be exported to its quotients allow us to impose on \mathcal{A} the "natural" Γ -valuation/filtration$$

 $\mathbf{T}(\cdot):\mathcal{A}^m\mapsto\mathcal{B}^{(m)}:f\to\mathbf{T}(f)$

where (Γ, \circ) , $\mathcal{B} \subset \Gamma \subset \langle \overline{\mathbf{V}} \rangle$, is a suitable semigroup.

$$egin{aligned} \mathcal{B} &:= \{ \omega \in \langle \overline{\mathbf{V}}
angle : \mathcal{I}_{\omega}
eq \mathsf{R} \} \subset \Big\{ \upsilon \omega : \upsilon \in \langle \overline{\mathbf{v}}
angle, \omega \in \langle \overline{\mathbf{V}}
angle \Big\} \ & \mathbf{T}(\cdot) : \mathcal{A}^m \mapsto \mathcal{B}^{(m)} : f o \mathbf{T}(f) \ & (\Gamma, \circ), \mathcal{B} \subset \Gamma \subset \langle \overline{\mathbf{V}}
angle, \end{aligned}$$

$$\begin{split} \mathcal{B} &:= \{ \omega \in \langle \overline{\mathbf{V}} \rangle : \mathcal{I}_{\omega} \neq R \} \subset \left\{ \upsilon \omega : \upsilon \in \langle \overline{\mathbf{v}} \rangle, \omega \in \langle \overline{\mathbf{V}} \rangle \right\} \\ & \mathbf{T}(\cdot) : \mathcal{A}^m \mapsto \mathcal{B}^{(m)} : f \to \mathbf{T}(f) \\ & (\Gamma, \circ), \mathcal{B} \subset \Gamma \subset \langle \overline{\mathbf{V}} \rangle, \end{split}$$

The associated Γ -graded ring $\mathcal{G} = \mathcal{G}(\mathcal{A})$ coincides as a **set** with \mathcal{A} and this is sufficient to smoothly export Buchberger test/completion but they don't coincide as **rings**:

the multiplication \star of ${\mathcal A}$ does not coincide with the one, $\ast,$ of ${\mathcal G}$

$$\begin{split} \mathcal{B} &:= \{ \omega \in \langle \overline{\mathbf{V}} \rangle : \mathcal{I}_{\omega} \neq R \} \subset \left\{ \upsilon \omega : \upsilon \in \langle \overline{\mathbf{v}} \rangle, \omega \in \langle \overline{\mathbf{V}} \rangle \right\} \\ & \mathbf{T}(\cdot) : \mathcal{A}^m \mapsto \mathcal{B}^{(m)} : f \to \mathbf{T}(f) \\ & (\Gamma, \circ), \mathcal{B} \subset \Gamma \subset \langle \overline{\mathbf{V}} \rangle, \end{split}$$

The associated Γ -graded ring $\mathcal{G} = \mathcal{G}(\mathcal{A})$ coincides as a **set** with \mathcal{A} and this is sufficient to smoothly export Buchberger test/completion but they don't coincide as **rings**:

the multiplication \star of \mathcal{A} does not coincide with the one, *, of \mathcal{G} For instance, if we consider the Weyl algebra,

$$\mathcal{A} = \mathbb{Q}\langle D, X \rangle / \mathbb{I}(DX - XD - 1)$$

where

$$\mathcal{G} = \mathbb{Q}[D, X], D \star X = XD - 1, D \star X = XD.$$

$$\begin{split} \mathcal{B} &:= \{ \omega \in \langle \overline{\mathbf{V}} \rangle : \mathcal{I}_{\omega} \neq R \} \subset \left\{ \upsilon \omega : \upsilon \in \langle \overline{\mathbf{v}} \rangle, \omega \in \langle \overline{\mathbf{V}} \rangle \right\} \\ & \mathbf{T}(\cdot) : \mathcal{A}^m \mapsto \mathcal{B}^{(m)} : f \to \mathbf{T}(f) \\ & (\Gamma, \circ), \mathcal{B} \subset \Gamma \subset \langle \overline{\mathbf{V}} \rangle, \end{split}$$

The associated Γ -graded ring $\mathcal{G} = \mathcal{G}(\mathcal{A})$ coincides as a **set** with \mathcal{A} and this is sufficient to smoothly export Buchberger test/completion but they don't coincide as **rings**:

the multiplication \star of \mathcal{A} does not coincide with the one, \star , of \mathcal{G} However an old slogan stated that in order to provide a Buchberger Algorithm on \mathcal{A} , one just needs to modify, in the algorithm for \mathcal{G} , the multiplication procedure! $\mathcal{A} = \mathcal{Q}/\mathcal{I}$ is an effectively given left *R*-module, endowed with its natural Γ -pseudovaluation $\mathbf{T}(\cdot)$ where the semigroup (Γ, \circ) satisfies

• $\mathcal{B} \subset \Gamma \subset \langle \overline{\mathbf{V}} \rangle$ and

• the restriction of < on Γ is a semigroup ordering.

We denote $\mathcal{G} = \mathcal{G}(\mathcal{A})$, \star the multiplication of \mathcal{A} , \star the one of \mathcal{G} .

ARITHMETICS OF \mathcal{A} AND $\mathcal{G}(\mathcal{A})$

Denote $\mathcal{G} = \mathcal{G}(\mathcal{A})$, \star the multiplication of \mathcal{A} , \star the one of \mathcal{G} .

- 1. For each term $\tau \in \mathcal{B} \subset \Gamma$ there are an automorphism $\alpha_{\tau} : R \to R$ and an α_{τ} -derivation $\theta_{\tau} : R \to R$ so that for each $r \in R$, $t \star r = \alpha_t(r)t + \theta_t(r)$ and $t \star r = \alpha_t(r)t$.
- 2. For two terms $\tau_1, \tau_2 \in \mathcal{B} \subset \Gamma$, there are elements $\varpi(\tau_2, \tau_1) \in R$ and $\Delta(\tau_2, \tau_1) \in \mathcal{A}, \mathbf{T}(\Delta(\tau_2, \tau_1)) < \tau_2 \circ \tau_1$ such that $\tau_2 \star \tau_1 = \varpi(\tau_2, \tau_1)\tau_2 \circ \tau_1 + \Delta(\tau_2, \tau_1)$ and $\tau_2 \star \tau_1 = \mathcal{L}(\tau_2 \star \tau_1) = \varpi(\tau_2, \tau_1)\tau_2 \circ \tau_1$.

3.
$$c_u \tau_u * c_v \tau_v = c_u \alpha_{\tau_u}(c_v) \varpi(\tau_u, \tau_v) \tau_u \circ \tau_v.$$

ARITHMETICS OF \mathcal{A} and $\mathcal{G}(\mathcal{A})$

Pesch, Nguefack-Pola

$$\mathcal{A} = \mathcal{R}\langle X_1, \dots, X_n, Y_1, \dots, Y_m \rangle / \mathcal{I}$$

$$X_j * X_i = a_{ij} X_i X_j, \quad Y_l * X_j = b_{jl} X_j^{e_i - 1} X_j Y_l, Y_k * Y_l = c_{lk} Y_l Y_k$$
where a_{ij}, b_{jl}, c_{lk} are invertible elements in $\mathcal{R}, e_i \in \mathbb{N}^*$.
3. $c_u \tau_u * c_v \tau_v = c_u \alpha_{\tau_u} (c_v) \varpi (\tau_u, \tau_v) \tau_u \circ \tau_v$.
4. $\alpha_{\tau_u} = \text{Id}$
5. $\tau_u \circ \tau_v = \Upsilon(\tau_u, \tau_v) \tau_u \tau_v, \Upsilon(\tau_u, \tau_v) \in \{X_1^{d_1} \cdots X_n^{d_n} \mid (d_1, \dots, d_n) \in \mathbb{N}^n\};$
6. $c_u \tau_u * c_v \tau_v = c_u \alpha_{\tau_u} (c_v) \varpi (\tau_u, \tau_v) \Upsilon(\tau_u, \tau_v) \tau_u \tau_v = \varpi (\tau_u, \tau_v) \Upsilon(\tau_u, \tau_v) \cdot c_u \tau_u \cdot c_v \tau_v.$

REDUCTION

For our attack we do not need Buchberger Theory at all, except for the notion of **normal form** and **Buchberger reduction** within a principal ideal $\mathbb{I}(p) \subset \mathcal{A}$, $p \in \mathcal{A} \setminus \{0\}$, \mathcal{A} being an iterated Ore extensions with power substitutions.

For $f \in \mathcal{A}^m \setminus \{0\}, \mathbb{I}(p) \subset \mathcal{A}^m$, an element $g := \operatorname{Nf}(f, F) \in \mathcal{A}^m$ is called a *twosided normal form* of f w.r.t. $\mathbb{I}(p)$, if

•
$$g \neq 0 \implies \mathbf{M}(p) \nmid \mathbf{M}(g),$$

• there is a representation $f - g = \sum_{i=1}^{\mu} a_i \lambda_i \star p \star b_i \rho_i$, with $\lambda_i, \rho_i \in \mathcal{B}, a_i \in R_{\lambda_i} \setminus \{0\}, b_i \in R_{\rho_i} \setminus \{0\}$ and $\mathbf{T}(f) = \lambda_1 \circ \mathbf{T}(p) \circ \rho_1 > \ldots > \lambda_i \circ \mathbf{T}(p) \circ \rho_i > \lambda_{i+1} \circ \mathbf{T}(p) \circ \rho_{i+1} > \ldots > \mathbf{T}(g).$

Attacking

We attack the Diffie-Hellman-like protocol by means of ...

INGREDIENTS

- Buchberger reduction
- left/right **divisibility**

RECALLING THE SETTING

Alice and Bob publicly choose a multivariate Ore extension S with constant subring R, $L \in S$ non-central and two subsets of C_l , $C_r \subset S$ whose elements do not commute with L, with

$$C_{l} = \{f(P): f = \sum_{i=0}^{m} f_{i}x^{i} \in R[x], m \in \mathbb{N}, f_{0} \neq 0\}$$

$$C_r = \{f(Q): f = \sum_{i=0}^m f_i x^i \in R[x], m \in \mathbb{N}, f_0 \neq 0\}$$

and $P, Q \in S$ non commuting with L.

KNOWN

The polynomials $P, Q, L \in S$ (P, Q non commuting with L) are **publicly known**.

UNKNOWN

The polynomials $f, g \in R[t]$ are kept secret.

Alice sends f(P)Lg(Q).

Let
$$g(t) = \sum_{i=a}^{d} c_i t^i$$
, $a \le d$, $c_a \ne 0$, so $g(Q) = \sum_{i=a}^{d} c_i Q^i$.
REDUCTION

 $\mathsf{T}(Q) \to \mathbf{tail}(Q) + R$

where R is a new variable.

AFTER REDUCTION YOU GET

$$f(P)L\sum_{i=a}^{d}c_{i}Q^{i} \rightarrow f(P)L\sum_{i=a+1}^{d}c_{i}Q^{i-a-1}R \cdot R^{a} + f(P)Lc_{a}R^{a} =$$
$$= XR \cdot R^{a} + YR^{a}$$

When $Y := f(P)Lc_a$ and $X := f(P)L\sum_{i=a+1}^{d} c_i Q^{i-a-1}$

- dividing Y by L from the right it is possible to find f(P) and f can be retrieved by reducing w.r.t. P;
- dividing X by Y from the left we get $\sum_{i=a+1}^{d} c_i Q^{i-a-1}$

The attack

From $L \sum_{i=a+1}^{d} c_i Q^{i-a-1}$ we can find g by reduction

$$\sum_{i=a+1}^{d} c_i Q^{i-a-1} \to \sum_{i=a+1}^{d} c_i R^{i-a-1}$$

ONE PROBLEM LEFT...

How can I be sure that I am in the case $Y := f(P)Lc_a$ and $X := f(P)L\sum_{i=a+1}^{d} c_iQ^{i-a-1}$?

How can I be sure that I am in the case $Y := f(P)Lc_a$ and $X := f(P)L\sum_{i=a+1}^{d} c_iQ^{i-a-1}$?

Everything depends on the test: is it true that

 $Y \mid_L X?$

IF NOT I keep on reducing.

BUT IF THE ANSWER IS POSITIVE

it means that we have reached the case $Y := f(P)Lc_a$ and $X := f(P)L\sum_{i=a+1}^{d} c_iQ^{i-a-1}$.

THREE-PASS EXCHANGE PROTOCOL

Alice and Bob choose a public multivariate Ore extension S and they choose $P, Q \in S$ (non commuting).

Alice chooses a secret $L \in S$ (non commuting with P and Q) to share with Bob and also $f_A, g_A \in R[x]$. $P_A = f_A(P)$ and $Q_A = g_A(Q)$ are private and non-commuting with L. Bob does the same getting P_B, Q_B .

- A computes and sends Bob $P_A L Q_A$
- B computes and sends Alice $P_B P_A L Q_A Q_B = P_A P_B L Q_B Q_A$
- A divides by left for P_A and by right for Q_A and sends $P_B L Q_B$ to Bob
- B divides by left for P_B and by right for Q_B and gets L.

WHAT IS THE MAIN DIFFERENCE?

- A computes and sends Bob $P_A L Q_A$
- B computes and sends Alice $P_B P_A L Q_A Q_B = P_A P_B L Q_B Q_A$
- A divides by left for P_A and by right for Q_A and sends $P_B L Q_B$ to Bob
- B divides by left for P_B and by right for Q_B and gets L.

An attacker **cannot know** L and he actually has to break the protocol to get back L.

It is more or less the same but we have lost one condition: we cannot make the division by L.

We can verify $Y \mid_L X$ but we cannot verify if $L \mid Y$ from right.

Using reduction from right as before we get f(P)L and g(Q). Reducing then from left we get f(P) and Lg(Q).

What if I reduce too much or too less?

Too less

Suppose I have reduced by Q from the right and I have found f(P)Lh(Q) and k(Q) instead of f(P)L and g(Q) with g(Q) = h(Q)k(Q). This may happen from right and from left contemporarily so I may get a(P)b(P)Lc(Q), d(Q), a(P), b(P)Lc(Q)d(Q) where f(P) = a(P)b(P) g(Q) = c(Q)d(Q). Therefore I would believe that b(P)Lc(Q) is my L but it is wrong.

Anyway reducing again by P on the left and Q on the right we will get a remainder. The part containing only remainders is L up to constants.

$$b(P)Lc(Q) = Pb'(P)Lc(Q) + b(0)Lc(Q) =$$

 $Pb'(P)Lc'(Q)Q + Pb'(P)Lc(0) + b(0)Lc'(Q)Q + \mathbf{b}(0)\mathbf{Lc}(0)$

Тоо мисн

Let us see the P part

Suppose $L = P^i C$. Once performing our attack we are forced to reduce by P on the left until it is not possible to reduce anymore. Therefore we would recover C instead of L.

Anyway three public data are available and from them we would find the pairs:

- (P^{a+i}, C) (coming from P_AL after left reduction)
- (P^{a+b+i}, C) (coming from $P_B P_A L$ after left reduction)
- (P^{b+i}, C) (coming from P_BL after left reduction)

Knowing a + i b + i and a + b + i we can recover *i*.

Thank you for your attention!