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Generalized Stickel’s
Diffie-Hellman protocols



Stickel

2005
Non-abelian finite group G ; P,Q ∈ G ,PQ 6= QP, all such data
being public.

Alice
Alice picks secretly a pair of integers (PA,QA).
Then sends Bob A = PPAQQA

Bob
Bob chooses another pair of the same fashion (PB ,QB).
Then sends Alice B = PPBQQB .

Secret

PPABQQA = PPA+PBQQA+QB = PPBAQQB .



What is G?

Stickel proposed to use the group of the invertibles matrices of
order n over a finite field G := GLn(F), but some weaknesses of
this choice was discussed by Shpilrain who considered more secure
working on the set Mn(R) of all matrices of order n over a finite
ring R.



Shpilrain

Data
Finite ring R; P,Q ∈ Mn(R),PQ 6= QP; all these data are public.

Alice
Alice picks secretly a pair of commutative polynomials
(PA,QA) ∈ R[X ]× R[X ].
Then she sends Bob A = PA(P)QA(Q)

Bob
Bob chooses another pair of the same fashion
(PB ,QB) ∈ R[X ]× R[X ]. Then he sends Alice B = PB(P)QB(Q).

Secret

PA(P)BQA(Q) =PA(P)PB(P)QB(Q)QA(Q) =

PB(P)PA(P)QA(P)QB(P) = PB(P)AQB(Q).

Mullan successfully mounted a linear algebra attack on it.



Maza - Monico - Rosenthal

Data
Finite semiring R with nonempty center C , not embeddable into a
field; L,P,Q ∈ Mn(R); all these data are public.

Alice
Alice picks secretly a pair of commutative polynomials
(PA,QA) ∈ C [X ]× C [X ]; then sends Bob A = PA(P)LQA(Q)

Bob
Bob chooses another pair of the same fashion
(PB ,QB) ∈ C [X ]× C [X ]; then sends Alice B = PB(P)LQB(Q).

Secret

PA(P)BQA(Q) =PA(P)PB(P)LQB(Q)QA(Q) =

PB(P)PA(P)LQA(P)QB(P) = PB(P)AQB(Q).



Cao - Dong -Wang

Diffie-Hellman-like protocol, which evaluates univariate
polynomials over elements in an agreed non-commutative ring R.

Alice
Alice picks a, b ∈ R,m, n ∈ N, f ∈ Z[X ] and sends to Bob
m, n, a, b and A := f (a)mbf (a)n.

Bob
Bob chooses h ∈ Z[X ] and sends Alice A := h(a)mbh(a)n.

Secret

f (a)mBf (a)n = f (a)mh(a)mbh(a)nf (a)n = h(a)mAh(a)n.



Now on Ore extensions



Ore extension

k = Fq, θ ∈ Aut(k):

k[x , θ] := {a0 + a1x + ...+ anx
n : n ∈ N, ai ∈ k, ∀i ∈ {0, ..., n}}

Non commutative: xa = θ(a)x ,∀a ∈ k. Factorization not unique.

There are non-central elements, commuting together.

Example
k[x , θ] = F4[x , θ] = F2[α][x , θ], θ the Frobenius automorphism. For
q1 = x + α and q2 = x2 + x + α: q1q2 = q2q1 = x3 + α2x2 + 1.



First idea

Alice and Bob want to share a secret on an insecure channel via a
Diffie-Hellman-like cryptosystem.

Public data
Construct S ⊂ k[x , θ] of non-central but mutually commutative
polynomials. Take a security parameter d and Q ∈ k[x , θ] of
degree d .



First idea

Alice
Takes LA,RA ∈ S (degree d) and compute PA = LAQRA. Send it
to Bob.

Bob
Takes LB ,RB ∈ S (degree d) and compute PB = LBQRB . Send it
to Alice.

Alice
Computes P = LAPBRA

Bob
Computes P = LBPARB

Elements in S commute!

P = LAPBRA = LALBQRBRA = LBLAQRARB = LBPARB



Cryptanalysis

Ore polynomials form a left and right Euclidean domain. So left
and right Euclidean division is possible.
Moreover it is possible to compute left/right GCDs.

GCD computation allows to attack the Diffie-Hellman-like
polynomial.



Burger-Heinle: Multivariate Ore Polynomials

The context of their Diffie-Hellman-like protocol is that of
multivariate Ore extensions.

For multivariate Ore extensions there is no left or right GCD so
the attack above is not feasible.



The protocol

Alice and Bob publicly choose a multivariate Ore extension S with
constant subring R, L ∈ S non-central and two subsets of
Cl ,Cr ⊂ S whose elements do not commute with L, with

Cl = {f (P) : f =
m∑
i=0

fix
i ∈ R[x ],m ∈ N, f0 6= 0}

Cr = {f (Q) : f =
m∑
i=0

fix
i ∈ R[x ],m ∈ N, f0 6= 0}

and P,Q ∈ S non commuting with L.



The protocol

Alice
Chooses (PA,QA) ∈ Cl × Cr

Bob
Chooses (PB ,QB) ∈ Cl × Cr

Alice
Sends Bob A = PALQA

Bob
Sends Alice B = PBLQB



The protocol

Alice
Computes PABQA

Bob
Computes PBAQB

The shared secret

PABQA = PAPBLQBQA = PBPALQAQB = PBAQB



Iterated Ore extensions
with power substitutions



Effectively given rings

Let R be a (not necessarily commutative) ring with identity 1R

and A another (not necessarily commutative) ring with identity 1A
which is a left module on R.
We can consider A to be effectively given when we are given

• sets v := {x1, . . . , xj , . . .}, V := {X1, . . . ,Xi , . . .}, which are
countable and

• Z := v t V = {x1, . . . , xj , . . . ,X1, . . . ,Xi , . . .};
• rings R ⊂ Q;

• surjective maps π : R� R and Π : Q� A, with

Π(xj) = π(xj)1A, for each xj ∈ v,

so that Π (R) = {r1A : r ∈ R} ⊂ A.



Thus, denoting I := ker(Π) ⊂ Q and I := I ∩ R = ker(π) ⊂ R,
we have A = Q/I and R = R/I ; moreover we can assume,
without loss of generality, that R ⊂ A. Further, when considering
A as effectively given in this way, we explicitly require the Ore-like
requirement that ∀Xi ∈ V, xj ∈ v,

Xixj ≡
i∑

l=1

π(alij)Xl + π(a0ij) mod I, alij ∈ Z〈v〉,

If not, Z〈x , y〉 as left Z[x ]-module requires

Xi := x iy Z〈x , y〉 ∼= Z[x ]〈X0,X1, . . . ,Xi , . . .〉/I (Xix − Xi+1)

X0 > X1 > X2 > · · ·Xi > Xi+1 · · ·



If we fix

• a term-ordering < on 〈Z〉
we can assume I to be given via

• its bilateral Gröbner basis G w.r.t. <

and, if < satisfies Xi > t for each t ∈ 〈v〉 and Xi ∈ V, also I is
given via

• its bilateral Gröbner basis G0 := G ∩R w.r.t. <.

For each Xi ∈ V, xj ∈ v, fij := Xixj −
∑i

l=1 alijXl − a0ij ∈ I ⊂ Q.
If we further require that < satisfies

Xixj = T(fij) for each Xi ∈ V, xj ∈ v,

and denote C := {fij : Xi ∈ V, xj ∈ v} we have

• G0 t C ⊂ G ,

• A is generated as R-module by Π(〈V〉) and,

• as Z-module, by a subset of
{
υω : υ ∈ 〈v〉, ω ∈ 〈V〉

}
.



Szekeres notation

We further denote

• for m ∈ N, 〈Z〉(m) := {tei : t ∈ 〈Z〉, 1 ≤ i ≤ m}.
• for each ω ∈ 〈V〉,

Iω := {r ∈ R : exists h ∈ Q,T(h) < ω, rω + h ∈ I} ⊃ I = I∩R

• Rω = R/Iω;

• L(I) := {ω ∈ 〈V〉 : Iω = R},
• B = 〈V〉 \ L(I) ⊂ 〈V〉,



W.r.t. a term-ordering < on B satisfiying the conditions above and
a well-ordering on Bm (which we will still denote <), satisfying

ω1 < ω2 =⇒ ω1t < ω2t, tω1 < tω2∀t ∈ B(m), ω1, ω2 ∈ B.

each non-zero element f ∈ Am has its canonical representation

f :=
s∑

j=1

c(f , tjeιj )tjeιj ,

tj ∈ B, c(f , tjeιj ) ∈ Rtj \ {0}, 1 ≤ ιj ≤ m, with
t1eι1 > t2eι2 > · · · > tseιs and we denote,
Supp(f ) := {tjeιj : 1 ≤ j ≤ m} the support of f , T<(f ) := t1eι1
its maximal term, lc<(f ) := c(f , t1eι1) its leading coefficient and
M<(f ) := c(f , t1eι1)t1eι1 its maximal monomial.



If we denote M(Am) := {ctei | t ∈ B, c ∈ Rt \ {0}, 1 ≤ i ≤ m}, the
unique finite representation can be reformulated

f =
∑

τ∈Supp(f )

mτ , mτ = c(f , τ)τ

as a sum of elements of the monomial set M(Am).



Specializing

• X := {X1, . . . ,Xn}, Y := {Y1, . . . ,Ym}, V := X t Y,〈V〉 the
set of all words on the alphabet V,

• Q := R〈V〉;
• Γ := {X d1

1 · · ·X dn
n Y e1

1 · · ·Y em
m | (d1, . . . , dn, e1, . . . , em) ∈

Nn+m},
• T := {X d1

1 · · ·X dn
n | (d1, . . . , dn) ∈ Nn},

• Tj := {X d1
1 · · ·X

dj
j | (d1, . . . , dj) ∈ Nj} ⊂ T for each

j : 1 ≤ j ≤ n,

• V := {Y e1
1 · · ·Y em

m | (e1, . . . , em) ∈ Nm},
• the lexicographical (id est alphabetical) ordering < on 〈V〉,

induced by X1 < . . . < Xn < Y1 < . . . < Ym, and its
restriction, still denoted <, on the (commutative) terms T ;



Specializing

• for each i , j : 1 ≤ i < j ≤ n, fij := XjXi − cijXiXj − dij , cij an
invertible element in R, dij ∈ R[Tj−1],
• for each j , l : 1 ≤ j ≤ n, 1 ≤ l ≤ m,
fjl := YlXj − cjlυjlXjYl − djl , cjl an invertible element in R,
υjl ∈ Tj , dij ∈ R[T ][Vl−1],
• for each l , k : 1 ≤ l < k ≤ m, flk := YkYl − clkYlYk − dlk , clk

an invertible element in R, dlk ∈ R[Vk−1];
• the binary operation ◦ on Γ defined by

Xj ◦ Xi = XiXj for each i , j : 1 ≤ i < j ≤ n,
Yl ◦ Xj = υjlXjYl for each j : 1 ≤ j ≤ n, l : 1 ≤ l ≤ m,
Yk ◦ Yl = YlYk for each l , k : 1 ≤ l < k ≤ m;

• CL := {fij , 1 ≤ i < j ≤ n},CR := {flk , 1 ≤ l < k ≤ m},
• C := CL ∪ {fjl , 1 ≤ j ≤ n, 1 ≤ l ≤ m} ∪ CR ;
• A := R〈V〉/I2(C ): iterated Ore extensions with power

substitutions.



Denote, for the semigroup (Γ, ◦), Γ(u) the sets

Γ(u) := {γei , γ ∈ Γ, 1 ≤ i ≤ u}, u ∈ N,

endowed with no operation except the natural action of Γ

Γ× Γ(u) × Γ→ Γ(u) : (δl , γ, δr ) 7→ δl ◦ γ ◦ δr ,∀δl , δr ∈ Γ, γ ∈ Γ(u).

Given a Γ-pseudovaluation

T(·) : A \ {0} 7→ B ⊂ Γ : f → T(f ),

a module M ⊂ Au and the Γ(u)-pseudovaluation

T(·) : M \ {0} 7→ B(u) ⊂ Γ(u) : f → T(f ),

and we define
• Fγ(M) := {f ∈ M : T(f ) ≤ γ} ∪ {0} ⊂ M, for each γ ∈ Γ(u);
• Vγ(M) := {f ∈ M : T(f ) < γ} ∪ {0} ⊂ M, for each γ ∈ Γ(u);
• Gγ(M) := Fγ(M)/Vγ(M), for each γ ∈ Γ(u);
• G (M) :=

⊕
γ∈Γ(u) Gγ(M).

• L : M 7→ G (M) map s.t. L(0) = 0 and, for each
f ∈ M, f 6= 0, t := T(f ),L(f ) class of f mod Vt(M).



Associated graded rings and modules

We call

• associated graded ring of A the left R-module G (A) which is
a Γ-graded ring, and

• associated graded module of M the left R-module G (M),
which is a Γ(u)-graded G (A)-module.



Spear’s Theorem

B := {ω ∈ 〈V〉 : Iω 6= R} ⊂
{
υω : υ ∈ 〈v〉, ω ∈ 〈V〉

}
Spear’s intuition that a Buchberger Theory defined in a ring can
be exported to its quotients allow us to impose on A the “natural”
Γ-valuation/filtration

T(·) : Am 7→ B(m) : f → T(f )

where (Γ, ◦), B ⊂ Γ ⊂ 〈V〉, is a suitable semigroup.



Spear’s Theorem

B := {ω ∈ 〈V〉 : Iω 6= R} ⊂
{
υω : υ ∈ 〈v〉, ω ∈ 〈V〉

}
T(·) : Am 7→ B(m) : f → T(f )

(Γ, ◦),B ⊂ Γ ⊂ 〈V〉,



Spear’s Theorem

B := {ω ∈ 〈V〉 : Iω 6= R} ⊂
{
υω : υ ∈ 〈v〉, ω ∈ 〈V〉

}
T(·) : Am 7→ B(m) : f → T(f )

(Γ, ◦),B ⊂ Γ ⊂ 〈V〉,

The associated Γ-graded ring G = G (A) coincides as a set with A
and this is sufficient to smoothly export Buchberger test/completion
but they don’t coincide as rings:
the multiplication ? of A does not coincide with the one, ∗, of G



Spear’s Theorem

B := {ω ∈ 〈V〉 : Iω 6= R} ⊂
{
υω : υ ∈ 〈v〉, ω ∈ 〈V〉

}
T(·) : Am 7→ B(m) : f → T(f )

(Γ, ◦),B ⊂ Γ ⊂ 〈V〉,

The associated Γ-graded ring G = G (A) coincides as a set with A
and this is sufficient to smoothly export Buchberger test/completion
but they don’t coincide as rings:
the multiplication ? of A does not coincide with the one, ∗, of G
For instance, if we consider the Weyl algebra,

A = Q〈D,X 〉/I(DX − XD − 1)

where
G = Q[D,X ],D ? X = XD − 1,D ∗ X = XD.



Spear’s Theorem

B := {ω ∈ 〈V〉 : Iω 6= R} ⊂
{
υω : υ ∈ 〈v〉, ω ∈ 〈V〉

}
T(·) : Am 7→ B(m) : f → T(f )

(Γ, ◦),B ⊂ Γ ⊂ 〈V〉,

The associated Γ-graded ring G = G (A) coincides as a set with A
and this is sufficient to smoothly export Buchberger test/completion
but they don’t coincide as rings:
the multiplication ? of A does not coincide with the one, ∗, of G
However an old slogan stated that in order to provide a Buchberger
Algorithm on A, one just needs to modify, in the algorithm for G,
the multiplication procedure!



A = Q/I is an effectively given left R-module, endowed with its
natural Γ-pseudovaluation T(·) where the semigroup (Γ, ◦) satisfies

• B ⊂ Γ ⊂ 〈V〉 and

• the restriction of < on Γ is a semigroup ordering.

We denote G = G (A), ? the multiplication of A, ∗ the one of G.



Arithmetics of A and G (A)

Denote G = G (A), ? the multiplication of A, ∗ the one of G.

1. For each term τ ∈ B ⊂ Γ there are an automorphism
ατ : R → R and an ατ -derivation θτ : R → R so that for each
r ∈ R, t ? r = αt(r)t + θt(r) and t ∗ r = αt(r)t.

2. For two terms τ1, τ2 ∈ B ⊂ Γ, there are elements
$(τ2, τ1) ∈ R and ∆(τ2, τ1) ∈ A,T(∆(τ2, τ1)) < τ2 ◦ τ1 such
that τ2 ? τ1 = $(τ2, τ1)τ2 ◦ τ1 + ∆(τ2, τ1) and τ2 ∗ τ1 =
L(τ2 ? τ1) = $(τ2, τ1)τ2 ◦ τ1.

3. cuτu ∗ cvτv = cuατu(cv )$(τu, τv )τu ◦ τv .



Arithmetics of A and G (A)

Pesch, Nguefack–Pola

A = R〈X1, . . . ,Xn,Y1, . . . ,Ym〉/I

Xj ∗ Xi = aijXiXj , Yl ∗ Xj = bjlX
ei−1
j XjYl ,Yk ∗ Yl = clkYlYk

where aij , bjl , clk are invertible elements in R, ei ∈ N∗.
3. cuτu ∗ cvτv = cuατu(cv )$(τu, τv )τu ◦ τv .
4. ατu = Id

5. τu ◦ τv = Υ(τu, τv )τuτv ,Υ(τu, τv ) ∈
{X d1

1 · · ·X dn
n | (d1, . . . , dn) ∈ Nn};

6. cuτu ∗ cvτv = cuατu(cv )$(τu, τv )Υ(τu, τv )τuτv =
$(τu, τv )Υ(τu, τv ) · cuτu · cvτv .



Reduction

For our attack we do not need Buchberger Theory at all, except
for the notion of normal form and Buchberger reduction within
a principal ideal I(p) ⊂ A, p ∈ A \ {0}, A being an iterated Ore
extensions with power substitutions.

For f ∈ Am \ {0}, I(p) ⊂ Am, an element g := Nf(f ,F ) ∈ Am is
called a twosided normal form of f w.r.t. I(p), if

• g 6= 0 =⇒ M(p) - M(g),

• there is a representation f − g =
∑µ

i=1 aiλi ? p ? biρi , with
λi , ρi ∈ B, ai ∈ Rλi \ {0}, bi ∈ Rρi \ {0} and
T(f ) = λ1 ◦ T(p) ◦ ρ1 > . . . > λi ◦ T(p) ◦ ρi >
λi+1 ◦ T(p) ◦ ρi+1 > . . . > T(g).



Attacking



The attack

We attack the Diffie-Hellman-like protocol by means of ...

Ingredients

• Buchberger reduction

• left/right divisibility



Recalling the setting

Alice and Bob publicly choose a multivariate Ore extension S with
constant subring R, L ∈ S non-central and two subsets of
Cl ,Cr ⊂ S whose elements do not commute with L, with

Cl = {f (P) : f =
m∑
i=0

fix
i ∈ R[x ],m ∈ N, f0 6= 0}

Cr = {f (Q) : f =
m∑
i=0

fix
i ∈ R[x ],m ∈ N, f0 6= 0}

and P,Q ∈ S non commuting with L.



The attack

Known
The polynomials P,Q, L ∈ S (P,Q non commuting with L) are
publicly known.

Unknown
The polynomials f , g ∈ R[t] are kept secret.

Alice sends f (P)Lg(Q).



The attack

Let g(t) =
∑d

i=a ci t
i , a ≤ d , ca 6= 0, so g(Q) =

∑d
i=a ciQ

i .

Reduction

T(Q)→ tail(Q) + R

where R is a new variable.



The attack

After reduction you get

f (P)L
d∑

i=a

ciQ
i → f (P)L

d∑
i=a+1

ciQ
i−a−1R · Ra + f (P)LcaR

a =

= XR · Ra + YRa

When Y := f (P)Lca and X := f (P)L
∑d

i=a+1 ciQ
i−a−1

• dividing Y by L from the right it is possible to find f (P) and
f can be retrieved by reducing w.r.t. P;

• dividing X by Y from the left we get
∑d

i=a+1 ciQ
i−a−1



The attack

From L
∑d

i=a+1 ciQ
i−a−1 we can find g by reduction

d∑
i=a+1

ciQ
i−a−1 →

d∑
i=a+1

ciR
i−a−1

One problem left...
How can I be sure that I am in the case Y := f (P)Lca and
X := f (P)L

∑d
i=a+1 ciQ

i−a−1?



The attack

How can I be sure that I am in the case Y := f (P)Lca and
X := f (P)L

∑d
i=a+1 ciQ

i−a−1?

Everything depends on the test: is it true that

Y |L X?

If not
I keep on reducing.

But if the answer is positive
it means that we have reached the case Y := f (P)Lca and
X := f (P)L

∑d
i=a+1 ciQ

i−a−1.



Three-pass exchange protocol

Alice and Bob choose a public multivariate Ore extension S and
they choose P,Q ∈ S (non commuting).

Alice chooses a secret L ∈ S (non commuting with P and Q) to
share with Bob and also fA, gA ∈ R[x ]. PA = fA(P) and
QA = gA(Q) are private and non-commuting with L. Bob does the
same getting PB ,QB .

A computes and sends Bob PALQA

B computes and sends Alice PBPALQAQB = PAPBLQBQA

A divides by left for PA and by right for QA and sends PBLQB

to Bob

B divides by left for PB and by right for QB and gets L.



What is the main difference?

A computes and sends Bob PALQA

B computes and sends Alice PBPALQAQB = PAPBLQBQA

A divides by left for PA and by right for QA and sends PBLQB

to Bob

B divides by left for PB and by right for QB and gets L.

An attacker cannot know L and he actually has to break the
protocol to get back L.



The attack

It is more or less the same but we have lost one condition: we
cannot make the division by L.

We can verify Y |L X but we cannot verify if L | Y from right.



The attack

Using reduction from right as before we get f (P)L and g(Q).
Reducing then from left we get f (P) and Lg(Q).

What if I reduce too much or too less?



Too less

Suppose I have reduced by Q from the right and I have found
f (P)Lh(Q) and k(Q) instead of f (P)L and g(Q) with
g(Q) = h(Q)k(Q).
This may happen from right and from left contemporarily so I may
get a(P)b(P)Lc(Q), d(Q), a(P), b(P)Lc(Q)d(Q) where
f (P) = a(P)b(P) g(Q) = c(Q)d(Q).
Therefore I would believe that b(P)Lc(Q) is my L but it is wrong.

Anyway reducing again by P on the left and Q on the right we will
get a remainder. The part containing only remainders is L up to
constants.

b(P)Lc(Q) = Pb′(P)Lc(Q) + b(0)Lc(Q) =

Pb′(P)Lc ′(Q)Q + Pb′(P)Lc(0) + b(0)Lc ′(Q)Q + b(0)Lc(0)



Too much

Let us see the P part
Suppose L = P iC . Once performing our attack we are forced to
reduce by P on the left until it is not possible to reduce anymore.
Therefore we would recover C instead of L.

Anyway three public data are available and from them we would
find the pairs:

• (Pa+i ,C ) (coming from PAL after left reduction)

• (Pa+b+i ,C ) (coming from PBPAL after left reduction)

• (Pb+i ,C ) (coming from PBL after left reduction)

Knowing a + i b + i and a + b + i we can recover i .



Thank you
for your attention!


