Continued Fractions and Factoring

Michele Elia - Politecnico di Torino

De Cyfris Augustae Taurinorum
Torino, December 6th, 2019

Outline of the presentation

(1) Fermat, the equation $p=x^{2}+y^{2}$, and Legendre
(2) Properties of continued fractions
(3) Convergents, quadratic forms

Periodicity and Symmetry
(1) Units in real quadratic fields and Factoring
© Shanks and Dirichlet
(0) Conclusions

Fermat (1607-1665)

In a letter to Pierre de Carcavi, August $14^{\text {th }}, 1659$, Pierre de Fermat reported several propositions, in particular

Teorema (Fermat)

Every prime p of the form $4 k+1$ is uniquely expressible as a sum of two squares, i.e.

$$
\begin{equation*}
p=X^{2}+Y^{2} \quad \Leftrightarrow \quad p \equiv 1 \bmod 4 \tag{1}
\end{equation*}
$$

Computation of X and Y in equation (1)

Two challenges were implicit in Fermat's problem
(1) Prove Fermat statement
(2) For all primes $p \equiv 1 \bmod 4$, compute explicitly the positive integers X and Y such that

$$
p=X^{2}+Y^{2}
$$

When a solution exists, it is obtained checking every possibility, using a $\mathbf{O}(\sqrt{p})$ arithmetical operations:

Write $Y=\sqrt{p-X^{2}}$ and check every integer $X<\sqrt{p}$ until Y is found.

When $N=1+n^{2}$, only one chack is needed, for example $N=152415222070337=$

Computation of X and Y in equation (1)

Two challenges were implicit in Fermat's problem
(1) Prove Fermat statement
(2) For all primes $p \equiv 1 \bmod 4$, compute explicitly the positive integers X and Y such that

$$
p=X^{2}+Y^{2}
$$

When a solution exists, it is obtained checking every possibility, using a $\mathbf{O}(\sqrt{p})$ arithmetical operations:

Write $Y=\sqrt{p-X^{2}}$ and check every integer $X<\sqrt{p}$ until Y is found.

When $N=1+n^{2}$, only one chack is needed, for example $N=152415222070337=1+12345656^{2}$

Proof of Theorem (fermat) - Euler (1707-1783) (constructive proof)

Probably the first proof of Fermat proposition is due to Euler (1749), and uses Fermat's infinite descent.

- The equation $X^{2}+Y^{2}=p$ implies the modular equation $x^{2}+1=0(\bmod p)$, which has a solution $\left|x_{0}\right|<\frac{p}{2}$ by the little Fermat's theorem, i.e. $x^{p-1}=1(\bmod p)$, and $p=4 k+1$.
- $x_{0}^{2}+1=s_{0} p$ with $s_{0}<\frac{p}{2}$
- Setting $x_{1}=x_{0}\left(\bmod s_{0}\right)$ and $x_{2}=1\left(\bmod s_{0}\right)$, we have

$$
x_{1}^{2}+x_{2}^{2} \quad\left(\bmod s_{0}\right)=x_{0}^{2}+1 \quad\left(\bmod s_{0}\right)=0 \Rightarrow x_{1}^{2}+x_{2}^{2}=s_{0} s_{1}
$$

with $s_{1}<\frac{s_{0}}{2}$.

Proof (cont.)

- Multiplying $s_{0} p$ by $s_{0} s_{1}$, and using an identity already known to Diophantus, we have

$$
\begin{equation*}
s_{0}^{2} s_{1} p=\left(x_{1}^{2}+x_{2}^{2}\right)\left(x_{0}^{2}+1\right)=\left(x_{0} x_{2}-x_{1}\right)^{2}+\left(x_{0} x_{1}+x_{2}\right)^{2} \tag{2}
\end{equation*}
$$

- Since $x_{0} x_{2}=x_{1}\left(\bmod s_{0}\right)$ by definition of x_{1} e x_{2}, we have $s_{0} \mid\left(x_{0} x_{2}-x_{1}\right)$, thus dividing (2) by s_{0}^{2}
- $\quad s_{1} p=\left(\frac{x_{0} x_{2}-x_{1}}{s_{0}}\right)^{2}+\left(\frac{x_{0} x_{1}+x_{2}}{s_{0}}\right)^{2}$
the rightest term is necessarily an integer.
The first step of the infinite descent is complete.
- Iterating, the process a sequence of positive decreasing terms is produced

$$
s_{0}>s_{1}>s_{2} \cdots>1
$$

which necessarily ends with 1.

One sentence proof (Zagier's proof) (non constructive)

Consider a prime $p=4 k+1$, and define the finite set of triples $\mathcal{T}=\left\{(x, y, z) \in \mathbb{Z}_{+}^{3}: x^{2}+4 y z=p\right\}$ which has two involutions
(1) The first involution is

$$
(x, y, z) \rightarrow(x, z, y) \quad \text { and fixes }(x, y, y)) .
$$

(2) The second involution has a more complex definition

$$
(x, y, z) \rightarrow\left\{\begin{array}{lll}
(x+2 z, z, y-x-z) & \text { if } x<y-z \\
(2 y-x, y, x-y+z) & \text { if } y-z<x<2 y \\
(x-2 y, x-y+z, y) & \text { if } x>2 y
\end{array}\right.
$$

and has the unique fixed point $(1,1, k) \in \mathcal{T}$.
Since involutions on the same finite set must have a number of fixed points with the same parity, if follows that $(x, y, y) \in \mathcal{T}$, i.e. $x^{2}+(2 y)^{2}=p$ necessarily has a solution.

Constructive proofs

The problem of effectively computing a solution to $X^{2}+Y^{2}=p$ ($p=4 k+1$) was considered by many authors in different times.
(1) Gauss (1825) gave two ways, the first is direct

$$
x=\frac{(2 k)!}{2(k!)^{2}} \bmod p \quad, \quad y=\frac{((2 k)!)^{2}}{2(k!)^{2}} \bmod p
$$

the second is based on quadratic forms of discriminant -4

$$
p \rightarrow p X^{2}+2 b_{1} X Y+\frac{b_{1}^{2}+1}{p} Y^{2} \rightarrow x^{2}+y^{2}
$$

where b_{1} is a root of $z^{2}+1$ modulo p.
(2) Jacobsthal (1906) solution is based on the sum

$$
S(a)=\sum_{n=1}^{p-1}\left(\frac{n\left(n^{2}-a\right)}{p}\right) \Rightarrow x=\frac{1}{2} S(Q R) \quad, \quad y=\frac{1}{2} S(Q N)
$$

where $Q R, Q N \in \mathbb{Z}_{p}$ such that $(Q R \mid p)=1$ and $(Q S \mid p)=-1$.

Constructive proofs (cont.)

(1) Legendre (1808) (pages 59-60 of Essai sur la Théorie des Nombres) showed, using the continued fraction expansion of \sqrt{p}, that the convergent $\frac{p_{m}}{q_{m}}$ with $m=\frac{\tau-1}{2}$ yields

$$
X=p_{m}^{2}-N q_{m}^{2}\left(=\Delta_{m}\right) \quad, \quad Y=\sqrt{N-X^{2}}
$$

It is noted that Y may also be computed from the convergents as

$$
Y=p_{m} p_{m-1}-N q_{m} q_{m-1} \quad\left(=\Omega_{m}\right)
$$

(2) The Legendre finding is a consequence of the palindromic character of the quotient sequence $a_{1}, \ldots, a_{\tau-1}$

Legendre own words

... Donc tous le fois que l'équation $x^{2}-A y^{2}=-1$ est résoluble (ce qui ha lieu entre autre cas lorsque A est un numbre premier $4 n+1)$ le nombre A peut toujours être decomposé en deux quarrés; et cette décomposition est donnée immediatement par lo quotient-complet $\frac{\sqrt{A}+I}{D}$ qui répond au second des quotients moyens compris dans la première période du développement de \sqrt{A}; le nombres I et D étant ainsi connu, on aura $A=D^{2}+I^{2}$.

Cette conclusion ranferme un des plus beaux théorèmes de la science des nombres, savoir, que tout nombre premier $4 n+1$ est la somme de deux quarrés; elle donne en même temps le moyen de faire cette décomposition d'une manière directe et sans aucun tâtonnement.

Example

Consider $N=149$, the period of the continued fraction of $\sqrt{149}$ is 9 ,

j	Δ_{j}	Ω_{j}
0	-5	8
1	17	-8
2	-4	9
3	7	-11
4	-7	10
5	4	-11
6	-17	9
7	5	-8
8	-1	12
9	5	-12
10	-7	11

In position 4 we find -7 and 10, i.e. $7^{2}+10^{2}=149$.

The Problem

A question is naturally suggested by the tricky property that Legendre discovered when the continued fraction expansion of \sqrt{N} has odd period:

What happens when the continued fraction expansion of \sqrt{N} has even period?

Continued Fractions

Simple continued fractions ($a_{i}>0, i>0, a_{i} \in \mathbb{N}$) are expressions of the form

$$
\begin{equation*}
a_{0}+\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}, \tag{3}
\end{equation*}
$$

where the a_{i} s are called quotients. The (simple) continued fractions may be finite or infinite. Infinite continued fraction are periodic when a finite pattern of quotients repeats indefinitely. Periodic continued fractions are compactly written in the form

$$
\begin{equation*}
\alpha=\left[b_{0}, \ldots, b_{k}, \overline{a_{1}, a_{2}, \ldots, a_{\tau-1}, a_{\tau}}\right] \tag{4}
\end{equation*}
$$

where the period of length τ is over-lined, and the pre-period is evidenced in red.

Continued Fractions - Lagrange (1736-1813)

If N is a positive non-square integer, we have

$$
\sqrt{N}=\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{2}, a_{1}, 2 a_{0}}\right]
$$

where the first $\tau-1$ terms of the period are a palindrome.

Theorem (Nouv. Mem. Acad. R. Berlin 1769/70)

A number $\alpha \in \mathbb{R} \backslash \mathbb{Q}$ is a quadratic irrational (i.e. $\alpha=\frac{a+b \sqrt{N}}{c}$) if and only if its continued fraction expansion is periodic.

Examples

Let τ denote the period.

$$
\sqrt{91}=[9, \overline{1,1,5,1,5,1,1,18}] \quad \tau=8
$$

A continued fraction is said purely periodic if the pre-period is missing.

$$
\begin{aligned}
& \frac{5+\sqrt{91}}{8}=[\overline{1,1,4,2,10,2,4,1,1,1,1,3,4,1,4,3,1,1}] \quad \tau=18 \\
& \sqrt{89}=[9, \overline{2,3,3,2,18}] \\
& \tau=5 \\
& \frac{9+\sqrt{89}}{8}=[\overline{2,3,3,2,18}] \\
& \tau=5 \\
& \frac{5+\sqrt{89}}{8}=[\overline{1,1,4,9,4,1,1}] \\
& \tau=7 .
\end{aligned}
$$

Galois (1811-1832)

A quadratic irrational α is said to be reduced if $\alpha>1$ and its conjugate α^{\prime} lies in the interval $-1<\alpha^{\prime}<0$. (Steuding p.75-78).

Theorem (Annals de Gergonne,1829)

The continued fraction expansion of a quadratic irrational number α is purely periodic if and only if α is reduced. In this case for the conjugate α^{\prime} of

$$
\alpha=\left[\overline{a_{0}, a_{1}, a_{2}, \ldots, a_{\tau-2}, a_{\tau-1}}\right]
$$

we have

$$
\begin{equation*}
-\frac{1}{\alpha^{\prime}}=\left[\overline{a_{\tau-1}, a_{\tau-2}, \ldots, a_{1}, a_{0}}\right] \tag{5}
\end{equation*}
$$

(cont.) A Corollary

Given $p=1 \bmod 4$ prime, then $p=Q_{m}^{2}+P_{m}^{2}, \quad Q_{m}<P_{m}$. Consider $\alpha=\frac{Q_{m}+\sqrt{p}}{P_{m}} \in \mathbb{Q}(\sqrt{p})$, we have $\alpha>1$ and $\left.\alpha^{\prime}=\frac{Q_{m}-\sqrt{p}}{P_{m}} \in\right]-1,0[$, thus by the theorem of Galois the continued fraction expansion of α is purely periodic Since $\alpha \alpha^{\prime}=-1$, the period turns out to be palindromic.

Example. Consider $N=89=5^{2}+8^{2}$, we have

$$
\begin{gathered}
\sqrt{89} \Rightarrow[[9],[2,3,3,2,18]] \\
\alpha=\frac{5+\sqrt{89}}{8} \Rightarrow[\overline{1,1,4,9,4,1,1}] \Leftarrow-\frac{1}{\alpha^{\prime}}
\end{gathered}
$$

The continued fraction of \sqrt{N}

Let $\sqrt{N}=\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{\tau-1}, a_{\tau}}\right]$, the m-convergent is the fraction obtained considering only the first m terms.
The sequence of convergents is

$$
\frac{p_{0}}{q_{0}}=\frac{a_{0}}{1}, \frac{p_{1}}{q_{1}}=\frac{a_{0} a_{1}+1}{a_{1}}, \cdots, \frac{p_{j}}{q_{j}}=\frac{a_{j} p_{j-1}+p_{j-2}}{a_{j} q_{j-1}+q_{j-2}}, \cdots
$$

Two sequences $\boldsymbol{\Delta}=\left\{\Delta_{j}\right\}_{j=1}^{\infty}$ and $\boldsymbol{\Omega}=\left\{\Omega_{j}\right\}_{j=1}^{\infty}$ are defined as

$$
\left\{\begin{array}{l}
\Delta_{j}=p_{j}^{2}-N q_{j}^{2} \\
\Omega_{j}=p_{j} p_{j-1}-N q_{j} q_{j-1} \\
\\
\Omega_{j}^{2}-\Delta_{j} \Delta_{j-1}=N
\end{array} \quad j=1,2, \ldots\right.
$$

$$
\Delta_{\tau-1}=(-1)^{\tau}
$$

(cont.)

(1) Let c_{n} and r_{n} be the elements of two sequences of positive integers defined by the relation

$$
\frac{\sqrt{N}+c_{n}}{r_{n}}=a_{n+1}+\frac{r_{n+1}}{\sqrt{N}+c_{n+1}}
$$

with $c_{0}=\lfloor\sqrt{N}\rfloor$, and $r_{0}=N-a_{0}^{2}$; the elements of the sequence $a_{1}, a_{2}, \ldots, a_{n} \ldots$ are thus obtained as the integer parts of the left-side fraction

$$
\begin{equation*}
a_{n+1}=\left\lfloor\frac{\sqrt{N}+c_{n}}{r_{n}}\right\rfloor=\left\lfloor\frac{c_{0}+c_{n}}{r_{n}}\right\rfloor \tag{6}
\end{equation*}
$$

(cont.)

(1) Let $a_{0}=\lfloor\sqrt{N}\rfloor$, the sequences $\left\{c_{n}\right\}_{n \geq 0}$ and $\left\{r_{n}\right\}_{n \geq 0}$ are produced by the recursions

$$
\begin{align*}
& a_{m+1}=\left\lfloor\frac{a_{0}+c_{m}}{r_{m}}\right\rfloor \\
& c_{m+1}=a_{m+1} r_{m}-c_{m} \tag{7}\\
& r_{m+1}=\frac{N-c_{m+1}^{2}}{r_{m}}
\end{align*}
$$

These recursive equations allow us to compute the sequence $\left\{a_{m}\right\}_{m \geq 1}$ using only rational arithmetical operations
(2)

$$
c_{m+1}=\left|\Omega_{m}\right| \quad, \quad r_{m+1}=\left|\Delta_{m}\right|
$$

(cont.) Periodic sequences

Theorem

Let $N \in \mathbb{Z}^{+}$be square-free, then:
The sequence $\boldsymbol{\Delta}=\left\{\Delta_{1}, \Delta_{2}, \cdots, \Delta_{\tau-1}, \Delta_{\tau}, \cdots\right\}$ is periodic with period τ, or 2τ if τ is odd. The first $\tau-3$ terms of a period satisfy the condition of symmetry $\Delta_{m}=(-1)^{\tau} \Delta_{\tau-m-2}$.

The sequence $\boldsymbol{\Omega}=\left\{\Omega_{1}, \Omega_{2}, \cdots, \Omega_{\tau-1}, \Omega_{\tau}, \cdots\right\}$ is periodic with period τ, or 2τ if τ is odd. The first $\tau-2$ terms of a period satisfy the condition of symmetry $\Omega_{m}=-(-1)^{\tau} \Omega_{\tau-1-m}$.

(cont.)

Theorem

The quadratic forms
$f_{m}(X, Y)=\Delta_{m} X^{2}+2 \Omega_{m} X Y+\Delta_{m-1} Y^{2} \Leftrightarrow\left[\Delta_{m}, 2 \Omega_{m}, \Delta_{m-1}\right]$
have discriminant $4 N$.
In every period (of length τ or 2τ) the correspondence $\mathbf{m} \leftrightarrow \mathrm{f}_{\mathrm{m}}$ is one-to-one.

Example

$\tau=10$ even

$$
\begin{array}{lc}
\sqrt{543}= & {[[23],[3,3,3, \quad 1,14, \quad 1,3,3,3,46]]} \\
\Delta & {[13,-11,34,-\mathbf{3}, 34,-11,13,-14,1,-14]} \\
\Omega & {[-19,20,-13,21,-21,13,-20,19,-23,23]}
\end{array}
$$

In position 4 of the period of Δ we find $\mathbf{- 3}$, a factor of 543
$\tau=11$ odd

$$
\begin{array}{lc}
\sqrt{6437}= & {[[80],[4,3,39,1,4,4,1,39,3,4,160]]} \\
\Delta & {[49,-4,127,-31,31,-127,4,-49,37,-1,37]} \\
\Omega & {[-68,79,-77,50,-74,50,-77,79,-68,80,-80]}
\end{array}
$$

In position 5 of the period we find $31^{2}+(-74)^{2}=6437$

Set $m=\frac{\tau-1}{2}$, then $\tau-m-2=\frac{\tau-3}{2}$. The symmetry in every period of the sequence Δ implies $\Delta_{\frac{\tau-3}{2}}=-\Delta_{\frac{\tau-1}{2}}$, thus the computation of the discriminant of the quadratic form $f_{\frac{\tau-1}{2}}$ lets us to conclude

$$
\begin{equation*}
p=\Delta_{\frac{\tau-1}{2}}^{2}+\Omega_{\frac{\tau-1}{2}}^{2} \tag{8}
\end{equation*}
$$

What is the complexity for computing $\Delta_{\frac{\tau-1}{2}}$ and $\Omega_{\frac{\tau-1}{2}}$?

τ even - Main theorem

Theorem

Let N be an odd square-free composite integer such that the continued fraction for \sqrt{N} has even period, then
(1) The fundamental unit \mathfrak{u} (or $\left.\mathfrak{u}^{3}\right)$ in $\mathbb{Q}(\sqrt{N})$ factors $2 N$,
(2) One of the factors of $2 N$ can be found in the positions $\frac{\tau-2}{2}+j \tau, j=0,1, \ldots$ of the infinite periodic sequence $\boldsymbol{\Delta}$.

Outline of the proof

Consider the j-convergent $\frac{A_{j}}{B_{j}}$, and define the column vector $\left[A_{j}, B_{j}\right]^{T}$. Since $A_{\tau-1}+B_{\tau-1} \sqrt{N}$ is a unit in $\mathbb{Q}(\sqrt{N})$, the matrix

$$
M_{\tau-1}=\left[\begin{array}{ll}
-A_{\tau-1} & N B_{\tau-1} \\
-B_{\tau-1} & A_{\tau-1}
\end{array}\right]
$$

is involutory, and has characteristic polynomial $Z^{2}-1$, i.e. eigenvalues ± 1, since the trace is 0 and the determinant $-A_{\tau-1}^{2}+N B_{\tau-1}^{2}=(-1)^{\tau-1}$, is -1 .
With a rather long argument, it can be proved that

$$
\left[\begin{array}{c}
A_{\tau-j-2} \tag{9}\\
B_{\tau-j-2}
\end{array}\right]=(-1)^{j} M_{\tau-1}\left[\begin{array}{c}
A_{j} \\
B_{j}
\end{array}\right]
$$

proof (cont.)

When $\tau-\ell-2=\ell$, i.e. $\ell=\frac{\tau-2}{2}$, we have two possibilities depending whether ℓ is even or odd

$$
\begin{aligned}
& A_{\tau-\ell-2}=A_{\ell}=A \quad \text { e } \quad B_{\tau-\ell-2}=B_{\ell}=B \quad \text { even } \ell \\
& A_{\tau-\ell-2}=-A_{\ell}=-A \quad \text { and } \quad B_{\tau-\ell-2}=-B_{\ell}=-B \quad \text { odd } \ell
\end{aligned}
$$

Therefore $[A, B]^{T}$ turns out to be an eigenvector of the matrix $M_{\tau-1}$ with eigenvalue $(-1)^{\frac{\tau-2}{2}}$.

proof (cont.)

Thus, we have that any eigenvector of the matrix $M_{\tau-1}$ is a scalar multiple of $\frac{1}{d}\left[A_{\tau-1}-(-1)^{\frac{\tau-2}{2}}, B_{\tau-1}\right]$, where
$d=\operatorname{gcd}\left\{A_{\tau-1}-(-1)^{\frac{\tau-2}{2}}, B_{\tau-1}\right\}$. Since $\operatorname{gcd}\{A, B\}=1$, from the identification $[A, B]=\frac{1}{d}\left[A_{\tau-1}-(-1)^{\frac{\tau-2}{2}}, B_{\tau-1}\right]$, it follows that

$$
A=\frac{A_{\tau-1}-(-1)^{\frac{\tau-2}{2}}}{d} \quad, \quad B=\frac{B_{\tau-1}}{d}
$$

thus, from the chain of equalities

$$
\Delta_{\frac{\tau-2}{2}}=A^{2}-N B^{2}=2 \frac{-(-1)^{\frac{\tau-2}{2}} A_{\tau-1}+1}{d^{2}}=2(-1)^{\frac{\tau}{2}} \frac{A}{d}
$$

it follows that $2 \frac{A}{d}$ divides $2 N$, that is $\Delta_{\frac{\tau-2}{2}}$ is a divisor of $2 N$.

Example

Consider $N=3 \cdot 5 \cdot 7 \cdot 11 \cdot 19=21945$; the period of the continued fraction of $\sqrt{21945}$ is found to be 10 ,

j	Δ_{j}	Ω_{j}
0	-41	148
1	64	-139
2	-129	117
3	16	-141
4	-21	147
5	16	-147
6	-129	141
7	64	-117
8	-41	139
9	1	-148
10	-41	148
11	64	-139

In position $j=\frac{\tau-2}{2}=4$ we find -21 , a factor of N.

Open problem

$\Delta_{\frac{\tau-2}{2}}$ is a divisor of $2 N$, but depending on the factors of N, it may be equal 2 , a trivial factor.

Find the conditions on N for having $\Delta_{\frac{\tau-2}{2}} \neq 2$.

When $N=p q$ is the product of two prime numbers, the conditions are known.

Main theorem (II)

Theorem

Let N be a product of two primes p, q congruent 3 modulo 4, then period τ is even and

$$
\Delta_{\frac{\tau-2}{2}}=\left(\frac{p}{q}\right) p \text { with } p<q
$$

What is the complexity for computing $\Delta_{\frac{\tau-2}{2}}$?

Factorizability of $N=p q$

$p \bmod 8$	$q \bmod 8$	Split?	$(p \mid q)$	$\Delta_{\tau / 2-1}$	$T \bmod 4$	
3	3	Yes	± 1	$-(p \mid q) p$	$1+(p \mid q)$	
3	7	Yes	± 1	$-(p \mid q) p$	$1+(p \mid q)$	
7	3	Yes	± 1	$-(p \mid q) p$	$1+(p \mid q)$	
7	7	Yes	± 1	$-(p \mid q) p$	$1+(p \mid q)$	
5	3	Yes	1	p	0	
3	5	Yes	1	$-p$	2	
5	3	Yes	-1	$2 p$	0	
3	5	Yes	-1	$-2 p$	2	
5	7	Yes	1	p	0	
7	5	Yes	1	$-p$	2	
5	7	Yes	-1	$-2 p$	2	
7	5	Yes	-1	$2 p$	0	
1	3	No	-1	-2	2	
1	3	Yes	1	p	AND $\quad 0$	
1	3	No/Yes	1	$-2,-2 p$	2	
3	1	No	-1		2	
3	1	Yes	1	$2 p$	AND $\quad 0$	
3	1	No/Yes	1	$-2,-p$	2	

Table : $p<q$

Factorizability of $N=p q$

7	1	No	-1	2	0	
7	1	No	1	2	AND	0
7	1	Yes	1	$-p,-2 p$	2	
1	7	No	-1	2	0	
1	7	No/Yes	1	$2, p, 2 p$	0	
5	1	No	-1		1,3	
5	1	No	1		AND	1,3
5	1	Yes	1	$-p$	AND	2
5	1	Yes	1	p	AND	0
1	5	No	-1		1,3	
1	5	No	1		AND	1,3
1	5	Yes	1	$-p$	AND	2
1	5	Yes	1	p	AND	0
5	5	No	-1		1,3	
5	5	No	1		AND	1,3
5	5	Yes	1	$-p$	AND	2
5	5	Yes	1	p	AND	0
1	1	No	-1		1,3	
1	1	No	1		AND	1,3
1	1	Yes	1	$-p$	AND	2
1	1	Yes	1	p	AND	0

The computational problem

Assuming that
i) a factor of N is in position $\frac{\tau-2}{2}+j \tau$, for some j,
ii) τ is unknown
the problem is:
How to get an unknown position $\frac{\tau-2}{2}+j \tau$ in the infinite sequence

$$
\boldsymbol{\Delta}=\Delta_{1}, \Delta_{2}, \ldots, \Delta_{m}, \ldots ?
$$

A way is offered by the
a) Shanks's infrastructural algorithm
(based on quadratic forms) that allows us to move quickly through the sequence $\boldsymbol{\Delta}$ with big and little jumps
b) Adopting as stopping rule the condition
Δ_{i} divides N

Quadratic forms

A binary quadratic form $f(x, y)=a x^{2}+2 b x y+c y^{2}$ is identified by the triplet of coefficients

$$
[a, 2 b, c]
$$

Definition

A real quadratic form $[a, 2 b, c]$ of discriminant $4 N$ is said to be reduced if b is the integer (unique in absolute value) such that $\sqrt{N}-|b|<\kappa<\sqrt{N}$, where $\kappa=\min \{|a|,|c|\}$.

We are interested in the class of reduced principal forms of discriminant $4 N$: when a quadratic form is not reduced it can be reduced by an algorithm of Gauss'.
Reduction is a linear transformation on the variable x and y, that does not change the class of a quadratic form.

Gauss reduction

Algorithm basic principle (p. 75-76, G.B. Mathews, Theory of Numbers, Chelsea)
Suppose that $[a, 2 b, c]$ is a primitive quadratic form which is not reduced and has discriminant $4 N$, with $|a|>|c|$.
A reduction function ρ is defined as

$$
\rho([a, 2 b, c])=\left[c, 2(b+c \alpha), a+2 b \alpha+c \alpha^{2}\right],
$$

where α is an integer selected to satisfy the inequality

$$
\lceil\sqrt{N}\rceil-|c| \leq b+c \alpha \leq\lfloor\sqrt{N}\rfloor
$$

If

$$
\left|a+2 b \alpha+c \alpha^{2}\right|<|c|
$$

the application of ρ is iterated.

Shanks' Infrastructure within a class

Let N be a non-square integer, and $\left[a_{0}, \overline{a_{1}, a_{2}, \ldots, a_{\tau-1}, a_{\tau}}\right]$ be the continued fraction expansion of \sqrt{N} having even period.
Let ϵ_{0} denote the positive fundamental unit of $\mathbb{K}=\mathbb{Q}(\sqrt{N})$. The natural logarithm $R_{\mathbb{K}}=\ln \epsilon_{0}$ is called regulator of \mathbb{K}. Consider the infinite sequence $\boldsymbol{\Upsilon}$ of reduced quadratic forms
$\mathbf{f}_{m}(X, Y)=\Delta_{m} X^{2}+2 \Omega_{m} X Y+\Delta_{m-1} Y^{2} \Leftrightarrow\left[\Delta_{m}, 2 \Omega_{m}, \Delta_{m-1}\right], m=1,2, \ldots$, with $\Delta_{0}=\Omega_{0}^{2}-N$ and $\Omega_{0}=\Omega_{\tau}$.
Every quadratic form in Υ has discriminant $4 N$.

Infrastructure - Giant step (cont.)

Theorem

The correspondence $m \leftrightarrow \mathbf{f}_{m}(x, y)$ for $1+\ell \tau \leq m \leq \tau+\ell \tau$, $\ell=0,1, \ldots$, is one-to-one, that is, in a period all quadratic forms $\mathbf{f}_{m}(x, y)$ are distinct.

Between pairs of elements in $\mathbf{\Upsilon}$ it is possible to define an operation, denoted with " \bullet ", for which $\mathbf{\Upsilon}$ is closed:

Definition

Let $\mathbf{f}_{m}, \mathbf{f}_{n} \in \mathbf{\Upsilon}$ be two quadratic forms, the operation $\mathbf{f}_{m} \bullet \mathbf{f}_{n}$ is defined as the Gauss's composition of two forms followed by the reduction to the closest quadratic form in $\mathbf{\Upsilon}$ (that is, the reduction ρ is applied the minimum number of times).

Infrastructure
 (cont.)

Definition (Gauss composition)

The composition $f_{3}=f_{1} \circ f_{2}$ of two forms $f_{1}=\left[a_{1}, 2 b_{1}, c_{1}\right]$ and $f_{2}=\left[a_{2}, 2 b_{2}, c_{2}\right]$, having the same discriminant, is defined to be

$$
f_{3}=\left[d_{0} \frac{a_{1} a_{2}}{d^{2}}, b_{2}+\frac{2 a_{2}}{d}\left(v n-w c_{2}\right), \frac{b_{3}^{2}-N}{a_{3}}\right]
$$

where:
$n=b_{1}-b_{2}, d=\operatorname{gcd}\left\{a_{1}, a_{2}, b_{1}+b_{2}\right\}, d_{0}=\operatorname{gcd}\left\{d, c_{1}, c_{2}, n\right\}$, and v, w are obtained using the extended Euclidean algorithm to satisfy the condition

$$
d=u a_{1}+v a_{2}+w\left(b_{1}+b_{2}\right) .
$$

Infrastructure (cont.)

It is possible to introduce a metric, compatible with the composition • by defining a distance between two contiguous quadratic forms in the sequence $\boldsymbol{\Upsilon}$

$$
d\left(f_{m}, f_{m+1}\right)=\frac{1}{2}\left|\ln \frac{\sqrt{N}+(-1)^{m} \Omega_{m}}{\sqrt{N}-(-1)^{m} \Omega_{m}}\right| .
$$

The distance between two quadratic forms $\mathbf{f}_{m}(x, y)$ and $\mathbf{f}_{n}(x, y)$, with $m>n$, is defined to be the sum

$$
\begin{equation*}
d\left(\mathbf{f}_{m}, \mathbf{f}_{n}\right)=\sum_{j=n}^{m-1} d\left(\mathbf{f}_{j+1}, \mathbf{f}_{j}\right) \tag{10}
\end{equation*}
$$

Infrastructure (cont.)

Assuming $f_{0}=f_{\tau}$, it is possible to prove that

$$
d\left(f_{0}, f_{\tau}\right)=\ln \epsilon_{0} \quad\left(\text { or } 3 \ln \epsilon_{0}\right)
$$

where ϵ_{0} is the fundamental unit of \mathbb{K}.
Shanks observed that, for the composition • of quadratic forms, with a good approximation we have

$$
d\left(f_{0}, f_{m} \bullet f_{n}\right) \approx d\left(f_{0}, f_{m}\right)+d\left(f_{0}, f_{n}\right)
$$

The approximation error is of polynomial order $O\left((\ln N)^{\kappa}\right)$ (Schoof).

Infrastructure - Baby step (cont.)

It is also possible to move forward or backward from a quadratic form $\mathbf{f}_{m}=\left[\Delta_{m}, 2 \Omega_{m}, \Delta_{m-1}\right]$ to the contiguous forms \mathbf{f}_{m+1} or \mathbf{f}_{m-1} respectively:
Moving forward

$$
\mathbf{f}_{m+1}=\rho^{+}\left(\mathbf{f}_{m}\right)=\left[\frac{b_{1}^{2}-N}{\Delta_{m}}, 2 b_{1}, \Delta_{m}\right]
$$

where b_{1} is computed as $2 b_{1}=\left[2 \Omega_{m} \bmod \left(2 \Delta_{m}\right)\right]+2 k \Delta_{m}$ with k chosen in such a way that $-\left|\Delta_{m}\right|<b_{1}<\left|\Delta_{m}\right|$.
Moving backward

$$
\mathbf{f}_{m-1}=\rho^{-}\left(\left(\mathbf{f}_{m}\right)=\left[\Delta_{m-1}, 2 b_{1}, \frac{b_{1}^{2}-N}{\Delta_{m-1}}\right]\right.
$$

where b_{1} is computed as $2 b_{1}=\left[-2 \Omega_{m} \bmod \left(2 \Delta_{m-1}\right)\right]+2 k \Delta_{m-1}$ with k chosen in such a way that $-\left|\Delta_{m-1}\right|<b_{1}<\left|\Delta_{m-1}\right|$.

Remark

(1) The sign of Δ_{m-1} is the same of Ω_{m}, which is opposite to that of Δ_{m}, thus in the sequence Υ the two triples of signs $(-,+,+)$ and $(+,-,-)$ alternate.
(2) The distance of $\mathbf{f}_{m}(x, y)$ from the beginning of $\boldsymbol{\Upsilon}$ is defined by referring to a hypothetical quadratic form $\mathbf{f}_{0}(x, y)$ properly defined, i.e. $\mathbf{f}_{0}(x, y)=\mathbf{f}_{\tau}(x, y)=\Delta_{0} x^{2}+2 \sqrt{N+\Delta_{0}} x y+y^{2}$, which is located before $\mathbf{f}_{1}(x, y)$, that is

$$
\begin{equation*}
d\left(\mathbf{f}_{m}, \mathbf{f}_{0}\right)=\sum_{j=0}^{m-1} d\left(\mathbf{f}_{j+1}, \mathbf{f}_{j}\right) \quad \text { if } m \leq \tau \tag{11}
\end{equation*}
$$

and by $d\left(\mathbf{f}_{m}, \mathbf{f}_{0}\right)=d\left(\mathbf{f}_{m \bmod \tau}, \mathbf{f}_{0}\right)+k R_{\mathbb{F}}$ if $k \tau \leq m<(k+1) \tau$.

Remark

(1) Shanks observed that, within the first period, the composition law "•" induces a structure similar to a cyclic group for the addition of distances modulo the regulator, (or three times the regulator).
(2) Between the elements of $\boldsymbol{\Upsilon}$ the distance is nearly maintained by the giant-steps, and is rigorously maintained by the baby-steps.

Theorem

The distance $d\left(\mathbf{f}_{\tau}, \mathbf{f}_{0}\right)$ is exactly equal to $\ln \mathfrak{c}_{\tau-1}$, i.e. this distance $d\left(\mathbf{f}_{\tau}, \mathbf{f}_{0}\right)$ is either the regulator $R_{\mathbb{K}}$ or $3 R_{\mathbb{K}}$. The distance $d\left(\mathbf{f}_{\frac{\tau}{2}}, \mathbf{f}_{0}\right)$ is exactly equal to $\frac{1}{2} \ln \mathbf{c}_{\tau-1}$,

Example of giant and baby steps

$$
\begin{aligned}
& \begin{array}{ccccccccccc}
a_{1} & a_{2} & \ldots & a_{m} & \ldots & a_{n} & \ldots & a_{\ell(m, n)} & \ldots & a_{\tau} & \ldots \\
\Delta_{1} & \Delta_{2} & \ldots & \Delta_{m} & \ldots & \Delta_{n} & \ldots & \Delta_{\ell(m, n)} & \ldots & \Delta_{\tau} & \ldots \\
f_{1} & f_{2} & \ldots & f_{m} & \ldots & f_{n} & \ldots & f_{\ell(m, n)} & \ldots & f_{\tau} & \ldots \\
d_{1} & d_{2} & \ldots & d_{m} & \ldots & d_{n} & \ldots & d_{m}+d_{n} & \ldots & \ln \left(\mathfrak{c}_{\tau-1}\right) & \ldots
\end{array} \\
& f_{m} \bullet f_{n}=f_{\ell(m, n)} \quad \Leftrightarrow \quad d_{\ell(m, n)} \approx d_{m}+d_{n} \\
& \ldots a_{m-1} \quad a_{m} \quad a_{m+1} \quad \ldots \\
& \ldots \Delta_{m-1} \quad \Delta_{m} \quad \Delta_{m+1} \quad \ldots \\
& \ldots f_{m-1} \quad f_{m} \quad f_{m+1} \quad \ldots \\
& \ldots d_{m-1} \quad d_{m} \quad d_{m+1} \quad \ldots \\
& f_{m+1}=\rho^{+}\left(f_{m}\right) \quad \Leftrightarrow \quad d_{m+1}=d_{m}+\frac{1}{2} \ln \frac{\sqrt{N}+(-1)^{m} \Omega_{m}}{\sqrt{N}-(-1)^{m} \Omega_{m}}
\end{aligned}
$$

Factoring

Let N be a composite non-square integer, and let N^{\prime} be the product of all primes in N. Assume that the continued fraction of $\sqrt{N^{\prime}}$ has even period.
Let $h_{\mathbb{K}}$ be the class number of $\mathbb{K}=\mathbb{Q}\left(\sqrt{N^{\prime}}\right)$ with fundamental positive unit ϵ_{0}, and regulator $R_{\mathbb{K}}=\ln \epsilon_{0}$.
Since $\mathfrak{c}_{\tau-1}$ is either equal to the positive fundamental unit of \mathbb{K} or equal to its cube, the regulator of $\mathfrak{O}_{\mathbb{K}}$ is either $R_{\mathbb{K}}=\ln \mathfrak{c}_{\tau-1}$, or $R_{\mathbb{K}}=\frac{1}{3} \ln \mathfrak{c}_{\tau-1}$.

Theorem

If the fundamental unit \mathbf{u} (or \mathbf{u}^{3}) of \mathbb{K} splits N, the computational complexity for obtaining a non-trivial factor is not greater than the complexity for computing the product $h_{\mathbb{K}} R_{\mathbb{K}}$.

Dirichlet

A celebrated Dirichlet's formula establishes the equality

$$
h_{\mathbb{K}} R_{\mathbb{K}}=\frac{\sqrt{N}}{2} L\left(1, \chi_{N}\right)
$$

where

- χ is a Kronecker character that, in this case, is given by the Jacobi symbol $\left(\frac{N}{\cdot}\right)$.
- $L\left(1, \chi_{N}\right)$ is a L-function of Dirichlet defined by the series

$$
\sum_{n=1}^{\infty}\left(\frac{N}{n}\right) \frac{1}{n}
$$

A conditional theorem

Dirichlet's result lets us to formulate a conditional theorem

Theorem

The factoring complexity of a composite N which is split by the unit $\mathfrak{c}_{\tau-1}($ in particular $N=p q$, with $p=q=3 \bmod 4)$ is not greater than the complexity for evaluating the series

$$
\sqrt{N} \sum_{n=1}^{\infty}\left(\frac{N}{n}\right) \frac{1}{n}
$$

with an approximation of the order $O\left((\ln N)^{a}\right), a>0$.

$\mathrm{L}\left(1, \chi_{N}\right)$

The direct computation of $L\left(1, \chi_{N}\right)$ is impractical when N is large. Using the functional equation, the following expression was derived

$$
L\left(1, \chi_{N}\right)=\sum_{x \geq 1}\left(\frac{N}{x}\right)\left(\frac{1}{x} \operatorname{erfc}\left(x \sqrt{\frac{\pi}{N}}\right)+\frac{1}{\sqrt{N}} E_{1}\left(\frac{\pi x^{2}}{N}\right)\right)
$$

where $\operatorname{erfc}(x)$ is the error complementary function computable as ([Abramowitz, p.297-299])

$$
\operatorname{erfc}(z)=\frac{2}{\sqrt{\pi}} \int_{z}^{\infty} e^{t^{2}} d t=1-\operatorname{erf}(z)=1-\frac{2}{\sqrt{\pi}} \sum_{n=0}^{\infty} \frac{(-1)^{n} z^{2 n+1}}{n!(2 n+1)}
$$

e $E_{1}(x)$ is the integral exponential function computable as

$$
E_{1}(z)=\int_{1}^{\infty} \frac{e^{-t z}}{t} d t=-\gamma-\ln (z)-\sum_{n=1}^{\infty} \frac{(-1)^{n} z^{n}}{n \cdot n!}
$$

Conclusions

(1) The factorization of an integer N can be obtained from the continued fraction expansion of \sqrt{N}, when the period is even.
(2) If the product $h_{\mathbb{K}} R_{\mathbb{K}}$ is computable with a good approximation, i.e. $O\left((\ln N)^{\kappa}\right)$, then it is possible to factorize with the same complexity.
(3) These properties have a significant impact in Number theory and Cryptography .

Bibliography

© Buell D.A., Binary Quadratic Forms, Springer, New York, 1989.
(2) Davenport H., The Higher Arithmetic, Dover, New York, 1960.
(3) Legendre A-M., Essai sur la Théorie des Nombres, Chez Courcier, Paris, 1808, reissued by Cambridge University Press, 2009.
(1) Perron O., Die Lehre von den Kettenbrüchen, Band I, Springer, Wiesbaden, 1977.
(0) Scharlau W., Opolka H., From Fermat to Minkowski, Springer, New York, 1985.
(6) Sierpinski W., Elementary Theory of Numbers, North Holland, New York, 1988.

