
The Schnorr Signature

Corso di dottorato di Blockchain e criptoeconomia
Andrea Gangemi, 18 June 2020

Introduction

The Schnorr signature is a digital signature algorithm which was described

by Claus Schnorr in 1989.

This signature scheme was patented until February 2008.

The scheme is known for its simplicity, and its security is based on the

supposed intractability of the Discrete Logarithm problem.

The classic scheme is based on the so-called Schnorr groups.

The Schnorr Signature, 2/13

Elliptic curve variant

The Schnorr's signature can also be computed on an elliptic curve.

KEY GENERATION

Fix an elliptic curve E on a �nite �eld Fq. Let N be the order of the curve.
Fix a generator G and a Hash Function h.
Every user chooses his secret key d , 0 < d < N, and computes his public

key P = dG = (Px ,Py).

SIGNING

Let M be the message.
The signer chooses an integer k , 1 < k < N and computes
R = kG = (Rx ,Ry).
The signer computes e = h(Rx ||M).
The signer computes s = k − de mod N.
The signature is the couple (Rx , s).

The Schnorr Signature, 3/13

Elliptic curve variant

VERIFICATION

The recipient computes Rv = sG .
The recipient computes e = h(Rx ||M).
If R − Rv = eP, the signature is valid.

This works because

Rv = sG = (k − de)G = kG − e(dG) = R − eP.

To recover the y coordinate, we choose the one which is a quadratic residue

(this works only if q ≡ 3 mod 4).

The Schnorr Signature, 4/13

Related Key Attack

This scheme is vulnerable to the Related Key Attack.

Starting from a valid signature (Rx , s) for the public key P , an attacker can

obtain a valid signature (Rx , s + ae) for the public key P − aG .

In fact, observe that

Rv = (s + ae)G = (k − de + ae)G = kG − e(dG) + e(aG) = R − e(P − aG).

This would render signatures insecure when keys are generated using

additive tweaks.

We can use key-pre�xed Schnorr signatures to protect against this attack,

i.e. computing e = h(Rx ||Px ||M).

The Schnorr Signature, 5/13

Schnorr advantages

ECDSA is fast and secure, however it does not allow a multisignature

scheme.

ECDSA requires the computation of an inverse and two multiplications,

which are not computationally ine�cient but they are also not the best

option.

Schnorr signatures allow a multisig scheme and a batch veri�cation feature

in a natural and e�cient way, thanks to its linearity.

The Schnorr Signature, 6/13

Batch Veri�cation

We can check the correctness of every transaction in a block with a single

veri�cation step.

Let u be the number of transactions in a block.

Let P1, . . . ,Pu be the public keys, M1, . . . ,Mu be the messages and

(Rx1 , s1), . . . , (Rxu , su) be the signatures.

Generate u − 1 random integers a2, . . . , au ∈ [1,N − 1].

Verify that

(s1 +
u∑

i=2

ai si)G = R1 +
u∑

i=2

aiRi − (e1P1 +
u∑

i=2

aieiPi ,)

where ei = h(Rxi ||Pxi ||Mi).

The Schnorr Signature, 7/13

Multisignature scheme

Schnorr's signatures allow for easy n-of-n multisignatures schemes.

They can be useful in a lot of situations, for example if we possess a shared

account where every user is equally important.

SIGNING

Let's call Psum = P1 + · · ·+ Pn the sum of every public key involved
(d1, . . . , dn are the associated private keys).

Every user chooses ki and computes Ri = kiG . then they sum the points:
Rsum = R1 + · · ·+ Rn.

Every user computes si = ki − die, where e = h(Rsum||Psum||M), then they
sum: ssum = s1 + · · ·+ sn.

The signature is the couple (Rsum, ssum).

The Schnorr Signature, 8/13

The Rogue Attack

VERIFICATION

The signature is valid if ssumG = Rsum − ePsum.

This scheme is vulnerable to the Rogue Attack.

Suppose n = 2: Alice has the couple (dA,PA), while Bob has (dB ,PB).

Bob could lie to Alice, saying its public key is P ′
B = PB − PA: then,

Psum = PA + P ′
B = PB , so Bob can sign the message without the Alice's

public key.

We need a method to utilize every single user public key, so that the rogue

attack becomes impossible to realize.

The Schnorr Signature, 9/13

MuSig

The MuSig scheme solves the Rogue Attack. Let's see how it works (for n-of-n
schemes):

SIGNING

Let L = h(P1|| . . . ||Pn). Every user computes the quantity bi = h(L||Pi).

Let X =
n∑

i=1

biPi .

Every user chooses ki and computes Ri = kiG . then they sum the points:
Rsum = R1 + · · ·+ Rn.

Every user computes ei = h(Rsum||X ||M)bi .

Every user computes si = ki −diei , then the aggregate is ssum = s1+ · · ·+ sn.

The signature is the couple (Rsum, ssum).

The Schnorr Signature, 10/13

MuSig

VERIFICATION

Check that ssumG = Rsum − e′X , where e′ = h(Rsum||X ||M).

Let's see why this works (for n = 2):

ssumG = (s1 + s2)G = (k1 − d1e1 + k2 − d2e2)G =

(k1 + k2)G − (d1e1 + d2e2)G = R1 + R2 − (e1P1 + e2P2) =

Rsum − (h(Rsum||X ||M)b1P1 + h(Rsum||X ||M)b2P2) =

Rsum − e ′(b1P1 + b2P2) = Rsum − e ′X .

The veri�cation step can be performed without knowing every single public key:

we just need the aggregate X .

The Schnorr Signature, 11/13

MuSig with a threshold

What if we want to make a m-of-n multisignature scheme? In some situations,

we want to be able to sign a message without the presence of all n private keys.

This scheme is possible, but it is not e�cient: we need to construct a

Merkle tree of aggregated public keys for all combinations we can use.

However, this number, which is trivially equal to
(n
m

)
, grows exponentially

in n.

For this reason, a possible m-of-n scheme is built on top of another scheme,

known as Pedersen Veri�able Secret Sharing Scheme (VSS scheme).

The Schnorr Signature, 12/13

Schnorr: pro and cons

Schnorr signature allows the creation of MultiSig schemes without

increasing the computational complexity.

In every aspect, it is more e�cient than ECDSA.

The signature is shorter than the ECDSA one: for this reason, more

transactions can be inserted into a block, and this could reduce the

transaction fees.

The MuSig scheme needs 3 di�erent rounds, and every round could

potentially be attacked.

m-of-n schemes are not trivial: BLS signatures allow for more natural

threshold schemes.

The Schnorr Signature, 13/13

