Functions with low c-differential uniformity

Daniele Bartoli

University of Perugia, Italy

CRYPTO CONFERENCE 2021
Torino - 27/05/2021

Outline

(1) Algebraic curves over finite fields

Outline

(1) Algebraic curves over finite fields
(2) How to prove absolutely irreducibility?
(3) How to prove existence of absolutely irreducible \mathbb{F}_{q}-components?

Outline

(1) Algebraic curves over finite fields
(2) How to prove absolutely irreducibility?
(3) How to prove existence of absolutely irreducible \mathbb{F}_{q}-components?
(9) Applications to differential uniformity of polynomials

What is a curve?

\mathbb{F}_{q} : finite field with $q=p^{h}$ elements

Definition (Affine plane)

$$
A G(2, q):=\left(\mathbb{F}_{q}\right)^{2}
$$

What is a curve?

\mathbb{F}_{q} : finite field with $q=p^{h}$ elements

Definition (Affine plane)

$$
A G(2, q):=\left(\mathbb{F}_{q}\right)^{2}
$$

Definition (Curve)

\mathcal{C} in $A G(2, q)$ Curve
class of proportional polynomials $F(X, Y) \in \mathbb{F}_{q}[X, Y]$ degree of $\mathcal{C}=\operatorname{deg}(F(X, Y))$

What is a curve?

\mathbb{F}_{q} : finite field with $q=p^{h}$ elements

Definition (Affine plane)

$$
A G(2, q):=\left(\mathbb{F}_{q}\right)^{2}
$$

Definition (Curve)

\mathcal{C} in $A G(2, q)$ Curve class of proportional polynomials $F(X, Y) \in \mathbb{F}_{q}[X, Y]$ degree of $\mathcal{C}=\operatorname{deg}(F(X, Y))$

$$
2 X+7 Y^{2}+3 \Longleftrightarrow 4 X+14 Y^{2}+6
$$

What is a curve?

\mathcal{C} defined by $F(X, Y)$

Definition

$$
\begin{aligned}
& (a, b) \in A G(2, q) \\
& \text { (affine) } \mathbb{F}_{q^{-}} \text {-rational point of } \mathcal{C}
\end{aligned} \Longleftrightarrow F(a, b)=0
$$

$\mathcal{C}: F(X, Y)=0$

Curves: absolute irreducibility

Definition

$\mathcal{C}: F(X, Y)=0$ affine equation

Definition

\mathcal{C} absolutely irreducible \Longleftrightarrow

$$
\begin{gathered}
\nexists G(X, Y), H(X, Y) \in \overline{\mathbb{F}}_{q}[X, Y]: \\
\quad F(X, Y)=G(X, Y) H(X, Y)
\end{gathered}
$$

$\operatorname{deg}(G(X, Y)), \operatorname{deg}(H(X, Y))>0$

Example

$X^{2}+Y^{2}+1$ absolutely irreducible
$X^{2}-s Y^{2}, s \notin \square_{q}$,
$\Longrightarrow(X-\eta Y)(X+\eta Y), \eta^{2}=s, \eta \in \mathbb{F}_{q^{2}}$ not absolutely irreducible

A fundamental tool: Hasse-Weil Theorem

Question

How many \mathbb{F}_{q}-rational points can \mathcal{C} have?

A fundamental tool: Hasse-Weil Theorem

Question

How many \mathbb{F}_{q}-rational points can \mathcal{C} have?

Theorem (Hasse-Weil Theorem)
\mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{q} The number N_{q} of \mathbb{F}_{q}-rational points is

$$
\left|N_{q}-(q+1)\right| \leq(d-1)(d-2) \sqrt{q} .
$$

A fundamental tool: Hasse-Weil Theorem

Question

How many \mathbb{F}_{q}-rational points can \mathcal{C} have?

Theorem (Hasse-Weil Theorem)
\mathcal{C} absolutely irreducible curve of degree d defined over \mathbb{F}_{q} The number N_{q} of \mathbb{F}_{q}-rational points is

$$
\left|N_{q}-(q+1)\right| \leq(d-1)(d-2) \sqrt{q} .
$$

Example

$\mathcal{C}: X^{2}-Y^{2}=0$ has $2 q+1 \mathbb{F}_{q^{-}}$rational points!
$\mathcal{C}: X^{2}-s Y^{2}=0, \quad s \notin \square_{q}$ has $1 \mathbb{F}_{q}$-rational point!

Definition

$f: \mathbb{F}_{p^{n}} \rightarrow \mathbb{F}_{p^{n}}$, and $c \in \mathbb{F}_{p^{n}}$,

$$
\underbrace{c_{a} D_{a} f(x)=f(x+a)-c f(x)}_{\begin{array}{c}
\text { (multiplicative) c-derivative } \\
\text { of } f \text { w.r.t. } a \in \mathbb{F}_{p^{n}}
\end{array}}, \quad \forall x \in \mathbb{F}_{p^{n}} .
$$

$$
{ }_{c} \Delta_{f}(a, b):=\left|\left\{x \in \mathbb{F}_{p^{n}}: f(x+a)-c f(x)=b\right\}\right|
$$

and

$$
{ }_{c} \Delta_{f}:=\max \left\{{ }_{c} \Delta_{f}(a, b): a, b \in \mathbb{F}_{p^{n}},(a, c) \neq(0,1)\right\}
$$

${ }_{c} \Delta_{f} \rightarrow c$-differential uniformity of f

- $c=1 \rightarrow$ usual derivative of f and its differential uniformity
- ${ }_{c} \Delta_{f}=1 \rightarrow f$ is PcN
- ${ }_{c} \Delta_{f}=2 \rightarrow f$ is APcN
[Ellingsen, Felke, Riera, Stănică, Tkachenko, IEEE Trans. Inform. Theory 2020]

Planar Functions, q odd

Definition (Planar Function, q odd)
q odd prime power $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ planar or perfect nonlinear if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \Longrightarrow x \mapsto f(x+\epsilon)-f(x) \text { is } \mathrm{PP}
$$

Planar Functions, q odd

Definition (Planar Function, q odd)

q odd prime power
$f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ planar or perfect nonlinear if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \Longrightarrow x \mapsto f(x+\epsilon)-f(x) \text { is } \mathrm{PP}
$$

- Construction of finite projective planes

DEMBOWSKI-OSTROM, Math. Z. 1968

- Relative difference sets

GANLEY-SPENCE, J. Combin. Theory Ser. A 1975

- Error-correcting codes

CARLET-DING-YUAN, IEEE Trans. Inform. Theory 2005

- S-boxes in block ciphers

NYBERG-KNUDSEN, Advances in cryptology 1993.

Planar Functions, q even

Definition (Planar Function, q even)
 q even
 $f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ planar if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \Longrightarrow x \mapsto f(x+\epsilon)+f(x)+\epsilon x \text { is } \mathrm{PP}
$$

Planar Functions, q even

Definition (Planar Function, q even)

q even
$f: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ planar if

$$
\forall \epsilon \in \mathbb{F}_{q}^{*} \Longrightarrow x \mapsto f(x+\epsilon)+f(x)+\epsilon x \text { is } \mathrm{PP}
$$

ZHOU, J. Combin. Des. 2013.
Other works
SCHMIDT-ZHOU, J. Algebraic Combin., 2014 SCHERR-ZIEVE, Ann. Comb., 2014
HU-LI-ZHANG-FENG-GE, Des. Codes Cryptogr., 2015
QU, IEEE Trans. Inform. Theory, 2016

Planar Functions, q even

Theorem (B.-SCHMIDT, J. Algebra 2018)
$f(X) \in \mathbb{F}_{q}[X], \operatorname{deg}(f) \leq q^{1 / 4}$

$$
f(X) \text { planar on } \mathbb{F}_{q} \Longleftrightarrow f(X)=\sum_{i} a_{i} X^{2^{i}}
$$

Planar Functions, q even

Theorem (B.-SCHMIDT, J. Algebra 2018)
$f(X) \in \mathbb{F}_{q}[X], \operatorname{deg}(f) \leq q^{1 / 4}$

$$
f(X) \text { planar on } \mathbb{F}_{q} \Longleftrightarrow f(X)=\sum_{i} a_{i} X^{2^{i}}
$$

Proposition (Connection with algebraic surfaces) $f(X) \in \mathbb{F}_{q}[X]$ planar $\Longleftrightarrow \mathcal{S}_{f}: \psi(X, Y, W)=0$

$$
\psi(X, Y, Z)=1+\frac{f(X)+f(Y)+f(Z)+f(X+Y+Z)}{(X+Y)(X+Z)} \in \mathbb{F}_{q}[X, Y, Z]
$$

has no affine \mathbb{F}_{q}-rational points off $X=Y$ and $Z=X$

Proof Strategy

- Consider \mathcal{S}_{f}

Proof Strategy

- Consider \mathcal{S}_{f}
- $\mathcal{C}_{f}=\mathcal{S}_{f} \cap \pi$

Proof Strategy

- Consider \mathcal{S}_{f}
- $\mathcal{C}_{f}=\mathcal{S}_{f} \cap \pi$
- \mathcal{C}_{f} has \mathbb{F}_{q}-rational A.I. component

Proof Strategy

- Consider \mathcal{S}_{f}
- $\mathcal{C}_{f}=\mathcal{S}_{f} \cap \pi$
- \mathcal{C}_{f} has \mathbb{F}_{q}-rational A.I. component
- Hasse-Weil $\Longrightarrow \mathcal{C}_{f}$ has
"good" points if q is large enough

Theorem
Suppose $f(x)$ not linearized

$$
\mathcal{C}_{f}: \quad F(X, Y)=0
$$

Then \mathcal{C}_{f} is \mathbb{F}_{q}-birationally equivalent to \mathcal{C}_{f}^{\prime} and \mathcal{C}_{f}^{\prime} contains an absolutely irreducible \mathbb{F}_{q}-rational component

Theorem
Suppose $f(x)$ not linearized

$$
\mathcal{C}_{f}: \quad F(X, Y)=0
$$

Then \mathcal{C}_{f} is \mathbb{F}_{q}-birationally equivalent to \mathcal{C}_{f}^{\prime} and \mathcal{C}_{f}^{\prime} contains an absolutely irreducible \mathbb{F}_{q}-rational component

Also \mathcal{C}_{f} contains an absolutely irreducible \mathbb{F}_{q}-rational component \mathcal{D}

Theorem
Suppose $f(x)$ not linearized

$$
\mathcal{C}_{f}: \quad F(X, Y)=0
$$

Then \mathcal{C}_{f} is \mathbb{F}_{q}-birationally equivalent to \mathcal{C}_{f}^{\prime} and \mathcal{C}_{f}^{\prime} contains an absolutely irreducible \mathbb{F}_{q}-rational component

Also \mathcal{C}_{f} contains an absolutely irreducible \mathbb{F}_{q}-rational component \mathcal{D}

If $\operatorname{deg} f(x)$ small enough \mathcal{D} has good points and $f(x)$ is not planar

Another method based on singular points

JANWA-McGUIRE-WILSON, J. Algebra, 1995
JEDLICKA, Finite Fields Appl., 2007
HERNANDO-McGUIRE, J. Algebra, 2011
HERNANDO-McGUIRE, Des. Codes Cryptogr., 2012
HERNANDO-McGUIRE-MONSERRAT, Geometriae Dedicata, 2014
SCHMIDT-ZHOU, J. Algebraic Combin., 2014
LEDUCQ, Des. Codes Cryptogr., 2015
B.-ZHOU, J. Algebra, 2018

Another method based on singular points

- Consider a curve \mathcal{C} defined by $F(X, Y)=0, \operatorname{deg}(F)=d$

Another method based on singular points

- Consider a curve \mathcal{C} defined by $F(X, Y)=0, \operatorname{deg}(F)=d$
- Suppose \mathcal{C} has no A.I. components defined over \mathbb{F}_{q}

Another method based on singular points

- There are two components of \mathcal{C}

$$
\begin{aligned}
& \mathcal{A}: A(X, Y)=0, \quad \mathcal{B}: \quad B(X, Y)=0, \text { with } \\
& F(X, Y)=A(X, Y) \cdot B(X, Y), \quad \operatorname{deg}(A) \cdot \operatorname{deg}(B) \geq 2 d^{2} / 9
\end{aligned}
$$

Another method based on singular points
－ $\mathcal{A} \cap \mathcal{B} \subset \operatorname{SING}(\mathcal{C})$

Another method based on singular points

- $\mathcal{I}(P, \mathcal{A}, \mathcal{B}) \leq m_{P}$ for all $P \in \operatorname{SING}(\mathcal{C})$

$$
2 d^{2} / 9 \leq \overbrace{\operatorname{deg}(A) \cdot \operatorname{deg}(B)=\sum_{P \in \mathcal{A} \cap \mathcal{B}} \mathcal{I}(P, \mathcal{A}, \mathcal{B})}^{\text {BEZOUT'S }} \leq \sum_{P \in \mathcal{A \cap B}} m_{P}
$$

How to get a contradiction

$$
2 d^{2} / 9 \leq \overbrace{\operatorname{deg}(A) \cdot \operatorname{deg}(B)=\sum_{P \in \mathcal{A} \cap \mathcal{B}} \mathcal{I}(P, \mathcal{A}, \mathcal{B})}^{\text {BEZOUT'S }} \leq \underbrace{\sum_{P \in \mathcal{A} \cap \mathcal{B}} m_{P}<2 d^{2} / 9}_{\text {CONTRADICTION }}
$$

How to get a contradiction

$$
2 d^{2} / 9 \leq \overbrace{\operatorname{deg}(A) \cdot \operatorname{deg}(B)=\sum_{P \in \mathcal{A} \cap \mathcal{B}} \mathcal{I}(P, \mathcal{A}, \mathcal{B})}^{\text {BEZOUT'S }} \leq \underbrace{\sum_{P \in \mathcal{A} \cap \mathcal{B}} m_{P}<2 d^{2} / 9}_{\text {CONTRADICTION }}
$$

- Good estimates on $\mathcal{I}(P, \mathcal{A}, \mathcal{B}), P=(\xi, \eta)$
- Analyzing the smallest homogeneous parts in

$$
F(X+\xi, Y+\eta)=F_{m}(X, Y)+F_{m+1}(X, Y)+\cdots
$$

- Proving that there is a unique branch centered at P
- Studying the structure of all the branches centered at P
- Good estimates on the number of singular points of \mathcal{C}

Non-existence results for PcN-monomials

Theorem

$c \in \mathbb{F}_{p^{r}} \backslash\{0,-1\}, \quad k$ such that $(t-1) \mid\left(p^{k}-1\right)$ $p \nmid t \leq \sqrt[4]{p^{r}}, X^{t}$ is NOT PcN if
(1) $p \nmid t-1, \quad p \nmid \prod_{m=1}^{7} \prod_{l=-7}^{7-m} m \frac{p^{k}-1}{t-1}+\ell, \quad t \geq 470$;
(2) $t=p^{\alpha} m+1,(p, \alpha) \neq(3,1), \alpha \geq 1, p \nmid m, m \neq p^{r}-1 \forall r \mid \ell$, where $\ell=\min _{i}\left\{m \mid p^{i}-1, c^{\left(p^{i}-1\right) / m}=1\right\}$.

$$
\mathcal{C}: F(X, Y)=\frac{(X+1)^{t}-(Y+1)^{t}-c\left(X^{t}-Y^{t}\right)}{X-Y} \in \mathbb{F}_{p^{r}}[X, Y] .
$$

[B.-TIMPANELLA, J. Alg. Combin. 2020]

Non-existence results for PcN monomials

$$
c: F(X, Y)=\frac{(X+1)^{t}-(Y+1)^{t}-c\left(X^{t}-Y^{t}\right)}{X-Y} \in \mathbb{F}_{p^{r}}[X, Y] .
$$

Non-existence results for PcN monomials

$$
\mathcal{C}: F(X, Y)=\frac{(X+1)^{t}-(Y+1)^{t}-c\left(X^{t}-Y^{t}\right)}{X-Y} \in \mathbb{F}_{p^{r}}[X, Y] .
$$

Singular points $\operatorname{SING}(\mathcal{C})$ satisfy

$$
\left\{\begin{array}{l}
\left(\frac{X+1}{X}\right)^{t-1}=\beta \\
\left(\frac{X}{Y}\right)^{t-1}=1 \\
\left(\frac{X+1}{Y+1}\right)^{t-1}=1
\end{array}\right.
$$

Non-existence results for PcN monomials

$$
\mathcal{C}: F(X, Y)=\frac{(X+1)^{t}-(Y+1)^{t}-c\left(X^{t}-Y^{t}\right)}{X-Y} \in \mathbb{F}_{p^{r}}[X, Y] .
$$

Singular points $\operatorname{SING}(\mathcal{C})$ satisfy

$$
\left\{\begin{array}{l}
\left(\frac{X+1}{X}\right)^{t-1}=\beta \\
\left(\frac{X}{Y}\right)^{t-1}=1 \\
\left(\frac{X+1}{Y+1}\right)^{t-1}=1
\end{array}\right.
$$

We use estimates on the number of points of particular Fermat curves
[GARCIA-VOLOCH, Manuscripta Math., 1987]
[GARCIA-VOLOCH, J. Number Theory, 1988]

Non-existence results for APcN monomials x^{d}
$p \nmid d(d-1)$, s the smallest positive integer such that $d-1 \mid\left(p^{s}-1\right)$
$\forall a, b \in \mathbb{F}_{q} \Longrightarrow(x+a)^{d}-c x^{d}=b$ has at most two solutions.

$$
\begin{aligned}
(d, q-1) & \leq 2 \quad \text { and } \\
\forall b \in \mathbb{F}_{q} \Longrightarrow(x+1)^{d}-c x^{d} & =b \text { has at most two solutions }
\end{aligned}
$$

$$
\mathcal{C}_{f, c}: \frac{(X+1)^{d}-(Y+1)^{d}-c\left(X^{d}-Y^{d}\right)}{X-Y}=0
$$

Remark

The existence of an \mathbb{F}_{q}-rational component in $\mathcal{C}_{f, c}$ is not enough to exclude the APcN case
[B.-CALDERINI, FFA 2021]

Non-existence results for APcN monomials x^{d}

Proposition

$\sqrt[d-1]{c} \notin \mathbb{F}_{p^{s}} \Longrightarrow \mathcal{C}_{f, c}$ is nonsingular $\Longrightarrow \mathcal{C}_{f, c}$ is absolutely irreducible

$$
\begin{aligned}
F_{c, d} & :=(x+1)^{d}-c x^{d}-t \\
G_{c, d}^{\text {arith }} & =\operatorname{Gal}\left(F_{c, d}(t, x): \mathbb{F}_{q}(t)\right) \\
G_{c, d}^{\text {geom }} & =\operatorname{Gal}\left(F_{c, d}(t, x): \overline{\mathbb{F}}_{q}(t)\right)
\end{aligned}
$$

Proposition

$$
\mathcal{S}_{d}=G_{c, d}^{\text {geom }} \leq G_{c, d}^{\text {arith }} \leq \mathcal{S}_{d}
$$

Non-existence results for APcN monomials x^{d}

[G. Micheli, SIAM J. Appl. Algebra Geometry 2019]
[G. Micheli, IEEE Trans. Inform. Theory 2020]

Theorem

$\sqrt[d-1]{c} \notin \mathbb{F}_{p^{s}}$ and q is large enough
$\exists t_{0} \in \mathbb{F}_{q}$ such that $(x+1)^{d}-c x^{d}=t_{0}$ has d solutions in \mathbb{F}_{q}

Remark

$\sqrt[d-1]{c} \notin \mathbb{F}_{p^{s}}$ and q is large enough

$$
{ }_{c} \Delta_{x^{d}}=d
$$

Rational PN or APN functions

Only polynomial functions have been considered so far

Remark

Every function $h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be described by a polynomial of degree at most q-1

Rational PN or APN functions

Only polynomial functions have been considered so far

Remark

Every function $h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be described by a polynomial of degree at most q－1

Remark

non－existence results obtained via algebraic varieties require low degree

Rational PN or APN functions

Only polynomial functions have been considered so far

Remark

Every function $h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ can be described by a polynomial of degree at most q-1

Remark

non-existence results obtained via algebraic varieties require low degree
It could be useful to investigate functions $h: \mathbb{F}_{q} \rightarrow \mathbb{F}_{q}$ described by rational functions $f(x) / g(x)$ of "low degree" to get new non-existence results

APN rational functions

[B.-FATABBI-GHIANDONI, in preparation 202?]

Proposition

q even, $\quad \psi=\frac{f}{g} \in \mathbb{F}_{q}(X), \quad g(x) \neq 0$ forall $x \in \mathbb{F}_{q} \quad(f, g)=1$

$$
S_{\psi}: \frac{\theta_{\psi}(X, Y, Z)}{(X+Y)(X+Z)(Y+Z)}=0
$$

ψ is APN has no \mathbb{F}_{q}-rational points off $X=Y, X=Z, Y=Z$
$\theta_{\psi}(X, Y, Z):=f(X) g(Y) g(Z) g(X+Y+Z)$

$$
+f(Y) g(X) g(Z) g(X+Y+Z)+
$$

$$
+f(Z) g(X) g(Y) g(X+Y+Z)
$$

$$
+f(X+Y+Z) g(X) g(Y) g(Z)
$$

APN rational functions

$$
\operatorname{deg}(f)-\operatorname{deg}(g)=2 \ell, \ell>0 \text { odd }
$$

- $g \notin \mathbb{F}_{q}\left[X^{p}\right]$; or
- $f^{\prime} \neq \gamma g$ for all $\gamma \in \mathbb{F}_{q}$

$$
\operatorname{deg}(g)-\operatorname{deg}(f)=2 \ell, \ell>0 \text { odd }
$$

- $\ell \equiv 1(\bmod 4)$; or
- $\ell \equiv 3(\bmod 8)$

Proposition

$\mathcal{S}_{\psi} \cap H_{\infty}$ contains a non-repeated absolutely irreducible component defined over \mathbb{F}_{q}

Proposition

$H \subset \operatorname{PG}(3, q)$ hyperplane
$S \cap H$ has non-repeated absolutely irreducible component over \mathbb{F}_{q} $\Longrightarrow S$ has a non-repeated absolutely irreducible component over \mathbb{F}_{q}

[Aubry, McGuire, Rodier, Contemp. Math. 2010]

Proposition

$H \subset \operatorname{PG}(3, q)$ hyperplane
$S \cap H$ has non-repeated absolutely irreducible component over \mathbb{F}_{q} $\Longrightarrow S$ has a non-repeated absolutely irreducible component over \mathbb{F}_{q}

[Aubry, McGuire, Rodier, Contemp. Math. 2010]

Proposition

$H \subset \operatorname{PG}(3, q)$ hyperplane
$S \cap H$ has non-repeated absolutely irreducible component over \mathbb{F}_{q} $\Longrightarrow S$ has a non-repeated absolutely irreducible component over \mathbb{F}_{q}

[Aubry, McGuire, Rodier, Contemp. Math. 2010]

Proposition

$H \subset \operatorname{PG}(3, q)$ hyperplane
$S \cap H$ has non-repeated absolutely irreducible component over \mathbb{F}_{q} $\Longrightarrow S$ has a non-repeated absolutely irreducible component over \mathbb{F}_{q}

[Aubry, McGuire, Rodier, Contemp. Math. 2010]

APN rational functions

Aubry-McGuire-Rodier

 \oplusLang-Weil bound for surfaces
Theorem

$$
\begin{array}{c|c}
\operatorname{deg}(f)-\operatorname{deg}(g)=2 \ell, \ell>0 \text { odd } & \operatorname{deg}(g)-\operatorname{deg}(f)=2 \ell, \ell>0 \text { odd } \\
\bullet g \notin \mathbb{F}_{q}\left[X^{p}\right] ; \text { or } & \bullet \ell \equiv 1(\bmod 4) ; \text { or } \\
\bullet f^{\prime} \neq \gamma g \text { for all } \gamma \in \mathbb{F}_{q} & \bullet \ell \equiv 1(\bmod 4)
\end{array}
$$

$$
\psi=\frac{f}{g} \text { is not exceptional APN }
$$

PN rational functions

[B.-TIMPANELLA, in preparation 202?]

Proposition

q odd, $\quad \psi=\frac{f}{g} \in \mathbb{F}_{q}(X), \quad g(x) \neq 0$ forall $x \in \mathbb{F}_{q} \quad(f, g)=1$
ψ is $P N$

$$
S_{\psi}: \frac{\theta_{\psi}(X, Y, Z)}{Z(X-Y)}=0
$$

over \mathbb{F}_{q}
has no \mathbb{F}_{q}-rational points

$$
\text { off } X=Y, Z=0
$$

$$
\begin{aligned}
\theta_{\psi}(X, Y, Z):= & (f(X+Z) g(X)-f(X) g(X+Z)) g(Y+Z) g(Y) \\
& -(f(Y+Z) g(Y)-f(Y) g(Y+Z)) g(X+Z) g(X)
\end{aligned}
$$

PN rational functions

Considering $S_{\psi} \cap H_{\infty}$

Proposition

$\operatorname{deg}(g)>\operatorname{deg}(f), \quad q>(3 \operatorname{deg}(g)+\operatorname{deg}(f))^{13 / 3}$

$$
\psi(x)=f(x) / g(x) P N \Longrightarrow \psi(x) \text { is permutation }
$$

Proposition

$q>(\operatorname{deg}(g)-\operatorname{deg}(f))^{4}$ and
(1) $\operatorname{deg}(g)>\operatorname{deg}(f)$, and $p \nmid(\operatorname{deg}(g)-\operatorname{deg}(f))$; or
(2) $\operatorname{deg}(g)<\operatorname{deg}(f), p \nmid(\operatorname{deg}(f)-\operatorname{deg}(g))$, and $x^{\operatorname{deg}(f)-\operatorname{deg}(g)}$ is not $P N$
$\Longrightarrow S_{\psi}$ has \mathbb{F}_{q}-rational a.i. component distinct from $X-Y=0$ $\Longrightarrow \psi(x)$ is not $P N$

Open problems

- Try to extend nonexistence results for rational APN e PN in the remaining cases
- What for rational APcN and PcN?
- Is there any chance to obtain rational APcN permutation?

THANK YOU

FOR YOUR ATTENTION

