A multifactor RSA-like scheme

Nadir Murru
joint work with Emanuele Bellini
Università di Trento, Dipartimento di Matematica

Lo schema RSA

Generazione delle chiavi

- si scelgono due numeri primi (grandi) p, q e si calcola $N=p q$;
- si sceglie un intero e tale che $\operatorname{gcd}(e,(p-1)(q-1)=1$. La coppia (N, e) è la chiave pubblica o di criptazione;
- si calcola $d=e^{-1}(\bmod (p-1)(q-1))$.

La tripla (p, q, d) è la chiave privata o di decriptazione.

Criptazione

Possiamo criptare un messaggio in chiaro $m \in \mathbb{Z}_{N}^{*}$. Il messaggio cifrato è $c=m^{e}(\bmod N)$.
Decriptazione
Si recupera il messaggio in chiaro calcolando $c^{d}(\bmod N)$.

Lo schema RSA

- Fattorizzare N
- Calcolo della radice discreta
- Attacchi che sfruttano alcune debolezze di RSA e della sua implementazione
- Ottimizzare i tempi di cifratura e decifratura

Extension to multifactor modulus

- There exists variants of RSA scheme which exploit a modulus with more than 2 factors to achieve a faster decryption algorithm.
- This variants are sometimes called Multifactor RSA or Multiprime RSA.
- The first proposal exploiting a modulus of the form $N=p_{1} p_{2} p_{3}$ has been patented by Compaq in 1997.
- About at the same time Takagi (1998) proposed an even faster solution using the modulus $N=p^{r} q$, for which the exponentiation modulo p^{r} is computed using the Hensel lifting method.
- Later, this solution has been generalized to the modulus $N=p^{r} q^{s}$

RSA-like cryptosystems

Encryption/Decryption

The Pell equation

The Pell equation is

$$
x^{2}-D y^{2}=1
$$

for D a non-square integer and we wanto to find integer solutions. It arises from the Archimede's cattle problem
"Compute, O friend, the number of the cattle of the sun which once grazed upon the plains of Sicily, divided according to color into four herds, one milk-white, one black, one dappled and one yellow. The number of bulls is greater than the number of cows, and the relations between them are as follows: etc..."

The Brahamagupta product:

$$
\left(x_{1}, y_{1}\right) \otimes\left(x_{2}, y_{2}\right)=\left(x_{1} x_{2}+D y_{1} y_{2}, x_{1} y_{2}+x_{2} y_{1}\right) .
$$

RSA-like cryptosystems

- RSA protocol based on the Pell equation, Lemmermeyer 2006
- RSA-like scheme based on isomorphism between conics and \mathbb{Z}_{N}^{*}, Padhye et al. 2006-2013
- RSA-like scheme based on Brahamagupta-Bhaskara equation, Thomas et al. 2011-2013
- RSA type cryptosystem based on cubic curves, Koyama et al. 1995-2017

The Pell equation from an algebraic point of view

If we consider $\mathbb{Q}[\sqrt{D}] \simeq \mathbb{Q}[t] /\left(t^{2}-D\right)$, the Brahmagupta product is the product of this quadratic field:

$$
(a+b t)(c+d t)=a c+b d t^{2}+(a d+b c) t=a c+b d D+(a d+b c) t .
$$

The norm of an element $x+y t$ is

$$
N(x+y t)=(x+y t)(x-y t)=x^{2}-D y^{2} .
$$

The Pell conic

A construction of the group of the parameters

We can get a group (P, \odot) using the following parametrization for the Pell conic

$$
y=\frac{1}{m}(x+1)
$$

which yields isomorphisms Φ and Φ^{-1} between (\mathcal{C}, \otimes) and (P, \odot)

Remark

The above parametrization can be also obtained in an algebraic way considering $\mathbb{A}=\mathbb{F}[x] /\left(x^{2}-D\right)$ and then $P=\mathbb{A}^{*} / \mathbb{F}^{*}$

A construction of the group of the parameters

This construction allows us to define the set $P=\mathbb{F} \cup\{\alpha\}$, with α not in \mathbb{F}, equipped with the following product:

$$
\left\{\begin{array}{l}
a \odot b=\frac{D+a b}{a+b}, \quad a+b \neq 0 \\
a \odot b=\alpha, \quad a+b=0
\end{array}\right.
$$

We have that (P, \odot) is a commutative group with identity α and the inverse of an element a is the element b such that $a+b=0$.

Proposition

If $\mathbb{F}=\mathbb{Z}_{p}$, then $\mathbb{A}=G F\left(p^{2}\right)$ and $B=\mathbb{A}^{*} / \mathbb{F}^{*}$ has order $p+1$. Thus, an analogous of the Fermat's little theorem holds in P :

$$
z^{\odot(p+2)} \equiv z \quad(\bmod p), \quad \forall z \in P .
$$

Generalization

Conic	Parameter	Product
$x^{2}-D y^{2}=\ell, \ell=u^{2}$	$m=\frac{x+u}{y}$	$m_{A} \odot m_{B}=\frac{m_{A} m_{B}+D}{m_{A}+m_{B}}$
$x^{2}-D y^{2}=\ell, \ell \neq u^{2}$	$m=\frac{y-\beta}{x-\alpha}$	$m_{A} \odot m_{B}=\frac{\left(D m_{A} m_{B}+1\right) \alpha-\left(m_{A}+m_{B}\right) \beta D}{\left(-\left(D m_{A} m_{B}+1\right) \beta+\left(m_{A}+m_{B}\right) \alpha\right) D}$
$y=e x^{2}+k$	$m=(x+\alpha) e$	$m_{A} \odot m_{B}=-2 \alpha e+m_{A}+m_{B}$

Rédei rational functions

The powers in P can be efficiently computed by means of the Rédei rational functions. They arise from the development of

$$
(z+\sqrt{d})^{n}=N_{n}(d, z)+D_{n}(d, z) \sqrt{d}
$$

for any integer $z \neq 0, d$ non-square integer. The Rédei rational functions are defined as

$$
Q_{n}(d, z)=\frac{N_{n}(d, z)}{D_{n}(d, z)}, \quad \forall n \geq 1
$$

Remark

The Rédei rational functions can be evaluated by means of an algorithm of complexity $O\left(\log _{2}(n)\right)$ with respect to addition, subtraction and multiplication over rings, More 1995.

Rédei rational functions

Proposition

We have

$$
Q_{n+m}(D, z)=Q_{n}(D, z) \odot Q_{m}(D, z)
$$

Corollary

Let $z^{\odot n}=\underbrace{z \odot \cdots \odot z}_{n}$ be the n-th power of z with respect to the product
\odot. Then

$$
z^{\odot n}=Q_{n}(d, z)
$$

Algorithms

Direct (m, n)
if $m=0 \quad$ return ∞
Set L, c_{j} s.t. $n=\sum_{j=1}^{L} c_{j} 2^{j-1}$

> / Pre-computation:
$x_{1}=m$
for $j=2, \ldots, L$

$$
x_{j}=x_{j-1}^{\ominus 2}
$$

/Exponentiation:

$$
\begin{aligned}
& y_{1}=\infty \\
& \text { for } j=1, \ldots, L \\
& \text { if } c_{j}=1 \quad y_{j+1}=y_{j} \odot x_{j} \\
& \text { else } \quad y_{j+1}=y_{j} \\
& \text { return } y_{L+1}
\end{aligned}
$$

More (m, n)
if $m=0$ or $n=0$ return ∞
Set L, c_{j} s.t. $n=\sum_{j=1}^{L} c_{j} 2^{j-1}$

$$
R_{1}=m
$$

$$
\text { for } j=1, \ldots, L-1
$$

$$
R_{j+1}=\frac{R_{j}^{2}+b}{2 R_{j}+a}
$$

$$
\text { if } c_{L-j}=1
$$

$$
R_{j+1}=\frac{m R_{j+1}+b}{R_{j+1}+m+a}
$$

return R_{L+1}

Modified_More (m, n)

if $m=0$ or $n=0 \quad$ return ∞

$$
\text { Set } L, c_{j} \text { s.t. } n=\sum_{j=1}^{L} c_{j} 2^{j-1}
$$

$$
A_{1}=m, B_{1}=1
$$

$$
\text { for } j=1, \ldots, L-1
$$

$$
A_{j+1}=A_{j}^{2}+b B_{j}
$$

$$
B_{j+1}=2 A_{j} B_{j}+a B_{j}^{2}
$$

$$
\text { if } c_{L-j}=1
$$

$$
A^{\prime}=A_{j+1}, B^{\prime}=B_{j+1}
$$

$$
A_{j+1}=m A^{\prime}+b B^{\prime}
$$

$$
B_{j+1}=A^{\prime}+(m+a) B^{\prime}
$$

return A_{L+1} / B_{L+1}

More
Modified More

| P | A | I | P | A | I |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $2(L+w-2)$ | $3(L-1)+2(w-1)$ | $L+w-2$ | $5(L-1)+3(w-1)$ | $3(L-1)+2(w-1)$ | 1 |

Pell hyperbola over rings

Theorem

The Pell equation $x^{2}-D y^{2}=1$ has $p^{r-1}(p+1)$ solutions in $\mathbb{Z}_{p^{r}}$ for $D \in \mathbb{Z}_{p^{r}}^{*}$ quadratic non-residue in \mathbb{Z}_{p}.

Theorem

Let p, q be prime numbers and $N=p^{r} q^{s}$, then for all $(x, y) \in \mathcal{C}$ we have

$$
(x, y)^{\otimes p^{r-1}(p+1) q^{s-1}(s+1)} \equiv(1,0) \quad(\bmod N)
$$

for $D \in \mathbb{Z}_{N}^{*}$ quadratic non-residue in \mathbb{Z}_{p} and \mathbb{Z}_{q}.

Pell hyperbola over rings

Corollary

Let p_{1}, \ldots, p_{r} be primes and $N=p_{1}^{e_{1}} \cdot \ldots \cdot p_{r}^{e_{r}}$, then for all $(x, y) \in \mathcal{H}_{\mathbb{Z}_{p r}}$ we have

$$
(x, y)^{\otimes \Psi(N)}=(1,0) \quad(\bmod N)
$$

where

$$
\Psi(N)=p_{1}^{e_{1}-1}\left(p_{1}+1\right) \cdot \ldots \cdot p_{r}^{e_{r}-1}\left(p_{r}+1\right)
$$

for $D \in \mathbb{Z}_{N}^{*}$ quadratic non-residue in $\mathbb{Z}_{p_{i}}$, for $i=1, \ldots, r$.
As a consequence, we have an analogous of the Euler theorem also for the product \odot, i.e., for all $m \in \mathbb{Z}_{N}^{*}$ the following holds

$$
m^{\odot \Psi(N)}=\alpha \quad(\bmod N)
$$

A scheme with multifactor modulus

Key generation

- choose r prime numbers p_{1}, \ldots, p_{r}, r odd integers e_{1}, \ldots, e_{r} and compute $N=\prod_{i=1}^{r} p_{i}^{e_{i}}$;
- choose an integer e such that $\operatorname{gcd}(e, \Psi(N))=1$;
- evaluate $d=e^{-1}(\bmod \Psi(N))$.

The public or encryption key is given by (N, e) and the secret or decryption key is given by $\left(p_{1}, \ldots, p_{r}, d\right)$.

A scheme with multifactor modulus

Encryption

We can encrypt pair of messages $\left(M_{x}, M_{y}\right) \in \mathbb{Z}_{N}^{*} \times \mathbb{Z}_{N}^{*}$.

- compute $D=\frac{M_{x}^{2}-1}{M_{y}^{2}}(\bmod N)$;
- compute $M=\Phi\left(M_{x}, M_{y}\right)=\frac{M_{x}+1}{M_{y}}(\bmod N)$;
- compute the ciphertext $C=M^{\odot e}(\bmod N)=Q_{e}(D, M)(\bmod N)$ Notice that not only C, but the pair (C, D) must be sent through the insecure channel.

A scheme with multifactor modulus

Decryption

- compute $C^{\odot d}(\bmod N)=Q_{d}(D, C)(\bmod N)=M$;
- compute $\Phi^{-1}(M)=\left(\frac{M^{2}+D}{M^{2}-D}, \frac{2 M}{M^{2}-D}\right)(\bmod N)$ for retrieving the messages $\left(M_{x}, M_{y}\right)$.

A scheme with multifactor modulus

Thus, our scheme can be also exploited when $N=p_{1}^{e_{1}} \cdot \ldots \cdot p_{r}^{e_{r}}$. It can be attacked by solving one of the following problems:
(1) factorizing the modulus $N=p_{1}^{e_{1}} \cdot \ldots \cdot p_{r}^{e_{r}}$;
(2) computing $\Psi(N)=p_{1}^{e_{1}-1}\left(p_{1}+1\right) \cdot \ldots \cdot p_{r}^{e_{r}-1}\left(p_{r}+1\right)$, or finding the number of solutions of the equation $x^{2}-D y^{2} \equiv 1 \bmod N$, i.e. the curve order, which divides $\Psi(N)$;
(3) computing Discrete Logarithm problem either in (\mathcal{C}, \otimes) or in (P, \odot);
(9) finding the unknown d in the equation $e d \equiv 1 \bmod \Psi(N)$;
(5) finding an impossible group operation in P;
(0) computing M_{x}, M_{y} from D.

Efficiency

- The appropriate number of primes to be chosen in order to resist state-of-the-art factorization algorithms depends from the modulus size, and, precisely, it can be: up to 3 primes for 1024, 1536, 2048, 2560, 3072, and 3584 bit modulus, up to 4 for 4096, and up to 5 for 8192.
- When $r=2$ our scheme is two times faster than RSA, as it has already been shown. If $r=3$ our scheme is 4.5 time faster, with $r=4$ is 8 times faster, and with $r=5$ is 12.5 times faster.

Thank you for the attention!

