A multifactor RSA-like scheme

Nadir Murru

joint work with Emanuele Bellini

Università di Trento, Dipartimento di Matematica

3

・ロト ・回ト ・ヨト ・ヨト

Generazione delle chiavi

- si scelgono due numeri primi (grandi) p, q e si calcola N = pq;
- si sceglie un intero e tale che gcd(e, (p − 1)(q − 1) = 1. La coppia (N, e) è la chiave pubblica o di criptazione;

• si calcola
$$d = e^{-1} \pmod{(p-1)(q-1)}$$
.
La tripla (p, q, d) è la *chiave privata* o di *decriptazione*.

Criptazione

Possiamo criptare un messaggio in chiaro $m \in \mathbb{Z}_N^*$. Il messaggio cifrato è $c = m^e \pmod{N}$.

Decriptazione

Si recupera il messaggio in chiaro calcolando $c^d \pmod{N}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つくつ

- Fattorizzare N
- Calcolo della radice discreta
- Attacchi che sfruttano alcune debolezze di RSA e della sua implementazione
- Ottimizzare i tempi di cifratura e decifratura

Э

イロト (雪) (ヨ) (ヨ)

- There exists variants of RSA scheme which exploit a modulus with more than 2 factors to achieve a faster decryption algorithm.
- This variants are sometimes called Multifactor RSA or Multiprime RSA.
- The first proposal exploiting a modulus of the form $N = p_1 p_2 p_3$ has been patented by Compaq in 1997.
- About at the same time Takagi (1998) proposed an even faster solution using the modulus $N = p^r q$, for which the exponentiation modulo p^r is computed using the Hensel lifting method.
- Later, this solution has been generalized to the modulus $N = p^r q^s$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● のへの

RSA-like cryptosystems

<ロト < 部 > < 注 > < 注 > 二 注

The Pell equation is

$$x^2 - Dy^2 = 1$$

for D a non-square integer and we wanto to find integer solutions. It arises from the Archimede's cattle problem

"Compute, O friend, the number of the cattle of the sun which once grazed upon the plains of Sicily, divided according to color into four herds, one milk-white, one black, one dappled and one yellow. The number of bulls is greater than the number of cows, and the relations between them are as follows: etc..."

The Brahamagupta product:

$$(x_1, y_1) \otimes (x_2, y_2) = (x_1x_2 + Dy_1y_2, x_1y_2 + x_2y_1).$$

イロト (雪) (ヨ) (ヨ)

- RSA protocol based on the Pell equation, Lemmermeyer 2006
- RSA-like scheme based on isomorphism between conics and \mathbb{Z}_N^* , Padhye et al. 2006–2013
- RSA-like scheme based on Brahamagupta-Bhaskara equation, Thomas et al. 2011–2013
- RSA type cryptosystem based on cubic curves, Koyama et al. 1995–2017

イロト イポト イヨト イヨト 三日

If we consider $\mathbb{Q}[\sqrt{D}] \simeq \mathbb{Q}[t]/(t^2 - D)$, the Brahmagupta product is the product of this **quadratic field**:

$$(a+bt)(c+dt) = ac + bdt^2 + (ad + bc)t = ac + bdD + (ad + bc)t.$$

The **norm** of an element x + yt is

$$N(x+yt) = (x+yt)(x-yt) = x^2 - Dy^2.$$

イロト イポト イヨト イヨト 三日

The Pell conic

*ロト *部ト *注ト *注ト - 注

We can get a group (P, \odot) using the following parametrization for the Pell conic

$$y=\frac{1}{m}(x+1)$$

which yields isomorphisms Φ and Φ^{-1} between (\mathcal{C},\otimes) and (P,\odot)

Remark

The above parametrization can be also obtained in an algebraic way considering $\mathbb{A} = \mathbb{F}[x]/(x^2 - D)$ and then $P = \mathbb{A}^*/\mathbb{F}^*$

A construction of the group of the parameters

This construction allows us to define the set $P = \mathbb{F} \cup \{\alpha\}$, with α not in \mathbb{F} , equipped with the following product:

$$\begin{cases} a \odot b = \frac{D+ab}{a+b}, \quad a+b \neq 0\\ a \odot b = \alpha, \quad a+b = 0 \end{cases}$$

We have that (P, \odot) is a commutative group with identity α and the inverse of an element *a* is the element *b* such that a + b = 0.

Proposition

If $\mathbb{F} = \mathbb{Z}_p$, then $\mathbb{A} = GF(p^2)$ and $B = \mathbb{A}^*/\mathbb{F}^*$ has order p + 1. Thus, an analogous of the Fermat's little theorem holds in P:

$$z^{\odot(p+2)} \equiv z \pmod{p}, \quad \forall z \in P.$$

Conic	Parameter	Product
$x^2 - Dy^2 = \ell, \ \ell = u^2$	$m = \frac{x+u}{y}$	$m_A \odot m_B = rac{m_A m_B + D}{m_A + m_B}$
$x^{2} - Dy^{2} = \ell, \ \ell \neq u^{2}$ $y = ex^{2} + k$	$m = \frac{y - \beta}{x - \alpha}$ $m = (x + \alpha)e$	$m_A \odot m_B = \frac{(Dm_A m_B + 1)\alpha - (m_A + m_B)\beta D}{(-(Dm_A m_B + 1)\beta + (m_A + m_B)\alpha)D}$ $m_A \odot m_B = -2\alpha e + m_A + m_B$

1

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶

The powers in P can be efficiently computed by means of the Rédei rational functions. They arise from the development of

$$(z+\sqrt{d})^n=N_n(d,z)+D_n(d,z)\sqrt{d},$$

for any integer $z \neq 0$, d non-square integer. The Rédei rational functions are defined as

$$Q_n(d,z) = rac{N_n(d,z)}{D_n(d,z)}, \quad \forall n \geq 1.$$

Remark

The Rédei rational functions can be evaluated by means of an algorithm of complexity $O(\log_2(n))$ with respect to addition, subtraction and multiplication over rings, More 1995.

Э

・ロト ・ 同ト ・ ヨト ・ ヨト

Algorithms

Direct(m, n)More(m, n)Modified_More(m, n)if m = 0return ∞ if m = 0 or n = 0 return ∞ if m = 0 or n = 0 return ∞ Set *L*, c_j s.t. $n = \sum_{i=1}^{L} c_j 2^{j-1}$ Set *L*, c_j s.t. $n = \sum_{i=1}^{L} c_j 2^{j-1}$ Set *L*, c_j s.t. $n = \sum_{i=1}^{L} c_j 2^{j-1}$ $R_1 = m$ $A_1 = m, B_1 = 1$ / Pre-computation: for i = 1, ..., L - 1for i = 1, ..., L - 1 $x_1 = m$ $R_{j+1} = \frac{R_j^2 + b}{2R_j + a}$ for j = 2, ..., L $A_{i+1} = A_i^2 + bB_i$ $x_i = x_{i-1}^{\odot 2}$ $B_{i+1} = 2A_iB_i + aB_i^2$ **if** $c_{I-i} = 1$ / Exponentiation: **if** $c_{I-i} = 1$ $R_{j+1} = \frac{mR_{j+1} + b}{R_{j+1} + m + a}$ $v_1 = \infty$ $A' = A_{i+1}, B' = B_{i+1}$ for j = 1, ..., L $A_{i+1} = mA' + bB'$ return R_{L+1} if $c_i = 1$ $y_{i+1} = y_i \odot x_i$ $B_{i+1} = A' + (m+a)B'$ else $y_{i+1} = y_i$ return A_{L+1}/B_{L+1} return y_{L+1} More Modified More Р Α I Р Α

2(L+w-2)

3(L-1) + 2(w-1) L+w-2 5(L-1) + 3(w-1) 3(L-1) + 2(w-1)

3

イロト (同ト (ヨト (ヨト))

Theorem

The Pell equation $x^2 - Dy^2 = 1$ has $p^{r-1}(p+1)$ solutions in \mathbb{Z}_{p^r} for $D \in \mathbb{Z}_{p^r}^*$ quadratic non-residue in \mathbb{Z}_p .

Theorem

Let p, q be prime numbers and $N = p^r q^s$, then for all $(x, y) \in C$ we have

$$(x,y)^{\otimes p^{r-1}(p+1)q^{s-1}(s+1)} \equiv (1,0) \pmod{N}$$

for $D \in \mathbb{Z}_N^*$ quadratic non-residue in \mathbb{Z}_p and \mathbb{Z}_q .

Corollary

Let $p_1, ..., p_r$ be primes and $N = p_1^{e_1} \cdot ... \cdot p_r^{e_r}$, then for all $(x, y) \in \mathcal{H}_{\mathbb{Z}_{p^r}}$ we have

$$(x,y)^{\otimes \Psi(N)} = (1,0) \pmod{N},$$

where

$$\Psi(N) = p_1^{e_1-1}(p_1+1) \cdot \ldots \cdot p_r^{e_r-1}(p_r+1),$$

for $D \in \mathbb{Z}_N^*$ quadratic non-residue in \mathbb{Z}_{p_i} , for i = 1, ..., r.

As a consequence, we have an analogous of the Euler theorem also for the product \odot , i.e., for all $m \in \mathbb{Z}_N^*$ the following holds

$$m^{\odot \Psi(N)} = \alpha \pmod{N},$$

イロト 不得 トイヨト イヨト 二日

Key generation

- choose r prime numbers p₁,..., p_r, r odd integers e₁,..., e_r and compute N = ∏^r_{i=1} p^{e_i};
- choose an integer e such that $gcd(e, \Psi(N)) = 1$;
- evaluate $d = e^{-1} \pmod{\Psi(N)}$.

The public or encryption key is given by (N, e) and the secret or decryption key is given by (p_1, \ldots, p_r, d) .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Encryption

We can encrypt pair of messages $(M_x, M_y) \in \mathbb{Z}_N^* \times \mathbb{Z}_N^*$.

• compute
$$D = \frac{M_x^2 - 1}{M_y^2} \pmod{N};$$

• compute $M = \Phi(M_x, M_y) = \frac{M_x + 1}{M_y} \pmod{N};$

• compute the ciphertext $C = M^{\odot e} \pmod{N} = Q_e(D, M) \pmod{N}$ Notice that not only C, but the pair (C, D) must be sent through the insecure channel.

イロト 不得 トイヨト イヨト 二日

Decryption

• compute
$$C^{\odot d} \pmod{N} = Q_d(D, C) \pmod{N} = M;$$

• compute
$$\Phi^{-1}(M) = \left(\frac{M^2 + D}{M^2 - D}, \frac{2M}{M^2 - D}\right) \pmod{N}$$
 for retrieving the messages (M_x, M_y) .

<ロト < 部 > < 注 > < 注 > 二 注

Thus, our scheme can be also exploited when $N = p_1^{e_1} \cdot \ldots \cdot p_r^{e_r}$. It can be attacked by solving one of the following problems:

- factorizing the modulus $N = p_1^{e_1} \cdot \ldots \cdot p_r^{e_r}$;
- computing Ψ(N) = p₁^{e₁-1}(p₁ + 1) · ... · p_r^{e_r-1}(p_r + 1), or finding the number of solutions of the equation x² − Dy² ≡ 1 mod N, i.e. the curve order, which divides Ψ(N);
- **③** computing Discrete Logarithm problem either in (\mathcal{C}, \otimes) or in (\mathcal{P}, \odot) ;
- finding the unknown d in the equation $ed \equiv 1 \mod \Psi(N)$;
- finding an impossible group operation in P;
- computing M_x, M_y from D.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- The appropriate number of primes to be chosen in order to resist state-of-the-art factorization algorithms depends from the modulus size, and, precisely, it can be: up to 3 primes for 1024, 1536, 2048, 2560, 3072, and 3584 bit modulus, up to 4 for 4096, and up to 5 for 8192.
- When r = 2 our scheme is two times faster than RSA, as it has already been shown. If r = 3 our scheme is 4.5 time faster, with r = 4 is 8 times faster, and with r = 5 is 12.5 times faster.

イロト イポト イヨト イヨト 三日

Thank you for the attention!

3

イロト (雪) (ヨ) (ヨ)