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Authentication QKD

Section 1

Introduction to (ITS) authentication

1



Authentication QKD

Setting

Insecure channel C

Alice Bob

Eve

m mm

m

mm

m m′

m′Authenticated channel A
m

m ,×

m,×

I A passive attacker can read messages on C.
I An active attacker has complete control on C.

We need an authenticated channel.
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Message Authentication Code (MAC)
Insecure channel C

Alice: k Bob: k

Eve

t

?

← MACk (m)

(m, t)

(m, t) (m′, t ′)

(m′, t ′)

Vfk (m′, t′)
?
= 1

Goal: build an authenticated channel from an insecure channel and a
shared secret key.

I Choose a tag-generation algorithm MAC : K ×M→ T and a
verification algorithm Vf : K ×M× T → {0, 1}.

I Given a message m and the key k a tag t is computed.
I The couple (m, t) is sent to Bob and intercepted by Eve.
I Bob verifies whether the received tag t ′ is valid.
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Authentication QKD

Real-world MACs

We require:
I Correctness: for every k ∈ K,m ∈M, it holds

Vfk(m,MACk(m)) = 1.

I Security: given access to an oracle of MACk(·), the attacker has a
negligible probability of forging a valid couple (m, t).

Secure MACs can be built from many cryptographic primitives:
I From block ciphers: CBC-MAC, GMAC.
I From hash functions: HMAC, KMAC.
I From pseudorandom function families: Poly1305.

All the above constructions have computational security.
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Authentication QKD

Computational vs Information-Theoretic Security

I Computational security is defined in terms of a security parameter n
and the presence of a probabilistic polynomial-time (PPT) adversary.

I A PPT adversary has a bounded computational power which is
polynomial in n.

A cryptographic scheme is computationally secure if any PPT adversary
has negligible probability (w.r.t. n) of breaking the scheme.

I Information-Theoretic security (ITS) is defined in the presence of an
adversary with unlimited computational power.

A cryptographic scheme is ITS if any adversary has negligible fixed
probability of breaking the scheme.
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Strongly universal functions
I ITS MACs are achievable if we limit the number of messages that

can be authenticated with a single key.

I We restrict to single message authentication.
I First studied by Carter and Wegman [CW79] through the use of

(almost) strongly universal functions.

ε-Almost Strongly Universal2 (ε-ASU2) functions
A family of functions H = {h :M→ T } is ε-ASU2, for ε ≥ 1/|T |, if

1. For any m ∈M and t ∈ T

|{h ∈ H | h(m) = t}| = |H|
|T |

2. For any m,m′ ∈M,m 6= m′ and t, t ′ ∈ T

|{h ∈ H | h(m) = t, h(m′) = t ′}| ≤ ε |H|
|T |
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One-time MAC

Insecure channel C

Alice: k Bob: k

Eve

t

?

= hk (m)

(m, t) (m, t)

t
?
= hk (m)

(m′, t ′)

(m′, t ′)

ke ←$K

t′ = hke (m
′)

t′
?
= hk (m

′)t

?

= hk (m)

(m, t)

(m, t)

placeholder

Ke = {k ∈ K | hk (m) = t}

ke ←$Ke

t′ = hke (m
′)

I Let H = {hk}k∈K, given a shared random key k , the tag t on
message m is obtained as t = hk(m).

I The attacker can try to:

1. Impersonate Alice, succeeding with probability 1/|T |.
2. Substitute Alice, succeeding with probability at most ε.
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Section 2

Authentication in Quantum Key Distribution
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QKD in two slides I

Quantum channel Q

Alice Bob

Eve

|ψ〉 |ψ〉

×

|ψ〉

|ψ〉

|ψ〉 |φ〉

|φ〉

Goal: build an ITS key exchange from a quantum channel.

I No-cloning theorem prevents a passive attacker on the quantum
channel.

I An active attacker can perform a man-in-the-middle attack.
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QKD in two slides II

Quantum channel Q

Authenticated classical channel A

QKDA QKDB

Alice Bob

|ψ〉 |ψ〉
k k

Quantum Key Distribution (QKD) builds an ITS key exchange from a
quantum channel and an authenticated classical channel.

I QKD protocols involve the use of classical authentication schemes.
I Overall unbounded security requires ITS MACs.
I A portion of the exchanged key can be used as the one-time

authentication key for the next round.
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QKD composability

Composability principle
The composition of secure cryptographic schemes should also be secure.

I QKD produces keys that are not uniformly distributed for the
attacker.

I ASU2-based one-time MACs are originally formulated in terms of
uniformly distributed keys.

Both QKD [Ben+05] and ASU2-based one-time MACs [AL14] are proved
to be secure in the Universally Composable (UC) framework.
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Authentication QKD

Key length

The length of the authentication key directly impacts the QKD key rate.

I The optimal case for ε = 1/|T | is impractical.

Let H = {hk :M→ T }k∈K be ε-ASU2, ε > 1/|T |. If |M| � |T |, then

log|K| ≥ 2 log(|T | − 1)− log(ε|T | − 1)

I In many constructions both ε and |K| depends on |M|.

Idea [WC81]: recycle part of the key.
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Authentication QKD

Key recycling

Let T = (F2)
t and let H = {hk :M→ T }k∈K be ε-ASU2. Then

{gk1,k2(·) := hk1(·)⊕ k2 | (k1, k2) ∈ K × T }

is ε-ASU2.

I The tag for message m is obtained as hk1(m)⊕ k2.
I The OTP key k2 “hides” the value hk1(m).
I k1 can be recycled in subsequent authentication rounds.

Key length consumption is asymptotically the optimal value log|T | = t.

Previous results on composability do not apply directly to this scheme.
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