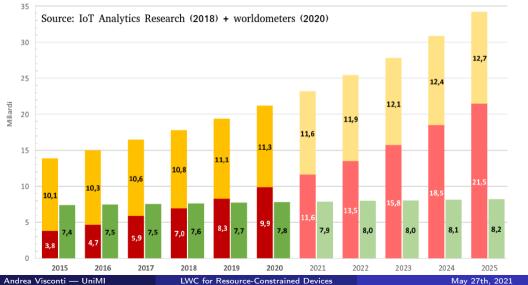
# Lightweight Cryptography for Resource-Constrained Devices

#### Andrea Visconti

Computer Science Department "Giovanni degli Antoni" University of Milan http://www.di.unimi.it/visconti andrea.visconti@unimi.it

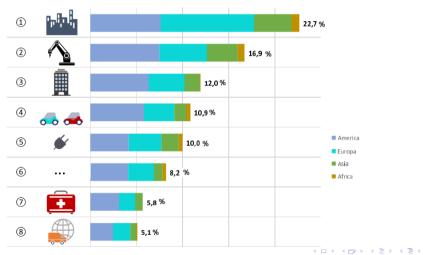



LWC for Resource-Constrained Devices

- Introduction and problem description;
- 2 Cryto for IoT Devices and state of art;
- Concluding remarks.

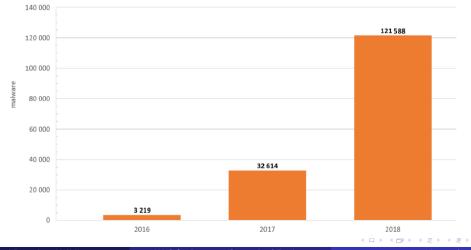
#### Milestones:

- 1982: Carnegie Mellon University
- 1999: IoT and RFID
- 2000: LG Electronics
- ...
- 2008: IoT conference
- 2009: Fully-self driving cars
- 2009: IoT and healthcare
- ...




LWC for Resource-Constrained Devices

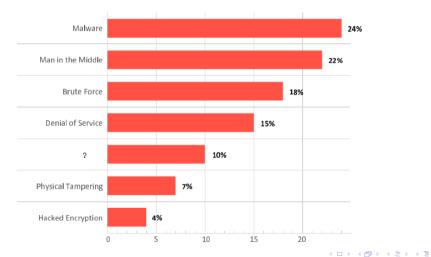
May 27th, 2021


4/1





- 32


### Kaspersky Lab: New IoT-malware grew three-fold in H1 2018



Andrea Visconti — UniMI

LWC for Resource-Constrained Devices

## The most common attacks (2015-2017) on IoT devices are:



Andrea Visconti — UniMI

May 27th, 2021 7 / 1

э

# Cyber attacks... why?

Most often, cyber attacks happen because users **have not** (or **have incorrectly**) implemented cryptographic techniques:

- Users avoid crypto... crypto means low performance, crypto means power consumption;
- Adoption of weak cryptographic functions (e.g. DES, TEA) Brute-force attack;
- Adoption of deprecated cipher suite in SSL/TLS protocol (e.g. weak RSA keys, MD5, downgrade attack) Man-in-the-middle attack;
- . . .

## Lightweight

We have to define the weight of an algorithm. The weight of a primitive is the amount of resources necessary to run the primitive itself...

- in time;
- in space;
- in software;
- in hardware;

#### .. in software

- the number of clock cycles necessary to execute one byte of data (speed);
- the number of clock cycles of overhead (latency);
- the amount of RAM necessary to carry the computation (memory complexity);
- the space required to store the algorithm e.g. in a flash memory.

#### .. in hardware

- the amount of data processed in one second using a given clock frequency, for example 100Hz (time efficiency or throughput);
- the time which must be taken, for example, to derive the sub-keys before they can be used (latency);
- the number of gates necessary to implement a primitive (GE<sup>a</sup>, Gate Equivalence) e.g. < 2000 GE;
- $\bullet$  a low average power consumption (power consumption) e.g. < 1-10  $\mu W/MHz;$
- a reasonable peak power consumption (power consumption) e.g. < 3-30  $\mu$ W/MHz;

<sup>a</sup>1 GE = 1 NAND gate.

### Notice that

- lightweightness in hardware doesn't imply lightweightness in software;
- lightweightness software in doesn't imply lightweightness in hardware.

#### Primitives:

- lightweight block ciphers
- lightweight hash functions
- lightweight stream ciphers
- ...

We are talking about pre-NIST "competition".

There is a long list of lightweight **block ciphers** (cryptoLUX):

|                                                                                                   | 4.1 ARX-Based                          |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|----------------------------------------|--|--|--|--|--|--|
|                                                                                                   | 4.1.1 Chaskey Cipher                   |  |  |  |  |  |  |
| Substitution-Permutation Network                                                                  | 4.1.2 HIGHT                            |  |  |  |  |  |  |
| 3.1 AES-like                                                                                      | 4.1.3 LEA                              |  |  |  |  |  |  |
| 3.1.1 AES                                                                                         | 4.1.4 RC5                              |  |  |  |  |  |  |
| 3.1.2 KLEIN                                                                                       | 4.1.5 SIMECK<br>4.1.6 SIMON and SPECK  |  |  |  |  |  |  |
| 3.1.3 LED                                                                                         |                                        |  |  |  |  |  |  |
| 3.1.4 Midori                                                                                      | 4.1.6.1 SIMON                          |  |  |  |  |  |  |
| 3.1.5 Mysterion                                                                                   | 4.1.6.2 SPECK                          |  |  |  |  |  |  |
| 3.1.6 SKINNY                                                                                      | 4.1.7 XTEA                             |  |  |  |  |  |  |
| 3.1.7 Zorro                                                                                       | 4.2 Two Branched                       |  |  |  |  |  |  |
| 3.2 Bit-Sliced S-Boxes<br>3.2.1 Fantomas/Robin<br>3.2.2 Noekeon                                   | 4.2.1 DESLX                            |  |  |  |  |  |  |
|                                                                                                   | 4.2.2 GOST revisited                   |  |  |  |  |  |  |
|                                                                                                   | 4.2.3 ITUbee                           |  |  |  |  |  |  |
| 3.2.3 PRIDE                                                                                       | 4.2.4 KASUMI/MISTY                     |  |  |  |  |  |  |
|                                                                                                   | 4.2.4.1 MISTY                          |  |  |  |  |  |  |
| 3.2.4 Rectangle                                                                                   | 4.2.4.2 KASUMI                         |  |  |  |  |  |  |
| 3.3 Other SPN-based Structures<br>3.3.1 mCrypton<br>3.3.2 MANTIS<br>3.3.3 PRESENT<br>3.3.4 PRINCE | 4.2.5 LBlock                           |  |  |  |  |  |  |
|                                                                                                   | 4.2.6 RoadRunneR                       |  |  |  |  |  |  |
|                                                                                                   | 4.2.7 SEA                              |  |  |  |  |  |  |
|                                                                                                   | 4.3 Generalized Feistel Networks (GFN) |  |  |  |  |  |  |
|                                                                                                   | 4.3.1 CLEFIA                           |  |  |  |  |  |  |
| 3.4 ARX-Based SPN                                                                                 | 4.3.2 Piccolo                          |  |  |  |  |  |  |
| 3.4.1 SPARX                                                                                       | 4.3.3 TWINE                            |  |  |  |  |  |  |
|                                                                                                   | 5 Other Designs                        |  |  |  |  |  |  |
|                                                                                                   | 5.1 KTANTAN and KATAN                  |  |  |  |  |  |  |
|                                                                                                   |                                        |  |  |  |  |  |  |

Andrea Visconti — UniMI

LWC for Resource-Constrained Devices

May 27th, 2021 13 / 1

There is a long list of lightweight hash functions (cryptoLUX):

3 Descriptions 3.1 ARMADILLO 3.2 DM-PRESENT 3.3 GLUON 3.4 Lesamnta-LW 3.5 PHOTON 3.6 QUARK 3.7 SipHash 3.8 SPN-Hash 3.9 SPONGENT

▶ ∢ ⊒

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

There is a long list of lightweight stream ciphers (cryptoLUX):

| 3 Desci | riptions                  |
|---------|---------------------------|
| 3.1     | A5/1                      |
| 3.2     | ChaCha                    |
| 3.3     | EO                        |
| 3.4     | FCSR-based Stream-Ciphers |
|         | 3.4.1 F-FCSR-H v3         |
|         | 3.4.2 F-FCSR-16 v3        |
| 3.5     | Grain                     |
| 3.6     | MICKEY v2                 |
| 3.7     | SNOW 3G                   |
| 3.8     | Trivium                   |

Unfortunately there isn't an international standard... not yet!

Andrea Visconti — UniMI

Open-source Libraries (Casati, M.Sc Thesis, 2020):

|                |          |         |             | -              |         | -         |          |         |          |       |
|----------------|----------|---------|-------------|----------------|---------|-----------|----------|---------|----------|-------|
|                | mbed TLS | wolfSSL | LibTomCrypt | AVR-Crypto-Lib | Wiselib | TinyCrypt | А. С. І. | TinyECC | Г. С. Г. | RELIC |
| Block Ciphers  | 7        | 5       | 22          | 18             | 1       | 1         | 2        | 0       | 3        | 1     |
| Stream Ciphers | 2        | 3       | 6           | 7              | 0       | 0         | 1        | 0       | 0        | 0     |
| Asymmetric     | 5        | 6       | 6           | 4              | 4       | 3         | 4        | 4       | 0        | 4     |
| Hash Functions | 6        | 8       | 10          | 13             | 1       | 1         | 4        | 1       | 0        | 3     |
| Documentation  | 1        | 4       | -           | -              | -       | -         | 4        | -       | <b>-</b> | -     |

э

ъ

#### Ciphers implemented:

- Symmetric (Block Ciphers): 3DES, AES, Blowfish, Camellia, Kasumi, IDEA, Cast, Piccolo, RC5, RC6, Aria, Seed, XTEA, Speck, Present, ...
- Symmetric (Stream Ciphers): RC4, Chacha, Salsa20, Grain, Sosemanuk, Trivium, ...
- Asymmetric: DH, ECDH, DSA, ECDSA, RSA, ...
- Hash Functions: SHA1, SHA2, SHA3, MD2, MD4, MD5, BLAKE, RIPEMD, WHIRLPOOL, ...

### Lightweight Cryptography for IoT Devices

NIST has initiated a process to evaluate and **standardize lightweight crypto algorithms** for IoT Devices.

# Why?

Because current cryptographic standards (that we use every day) were designed for **desktop environments** (or server environments).

These algorithms usually **don't fit** into IoT devices — e.g. AES about 1500 GE (encryption only!! no decryption, no key schedule), the internal state of SHA-3 requires 1600 bits, SHA-2 requires 512 bits, etc.

#### NIST-approved crypto standards

- FIPS 197 (AES) + FIPS 800 38 series (Modes of Operation)
- FIPS 180 (SHA-1 SHA-2) + FIPS 202 (SHA-3)
- GMAC, CMAC, HMAC, KMAC
- Signatures, Key-derivation, ...

#### Examples of constrained devices:

- RFID tags;
- Sensor networks;
- IoT devices.

ъ

## Some applications

- RFID anti-counterfeiting (using challenge-response protocols);
  - RFID chips have a small amount of memory;
- Driving assistance system (in-vehicle, vehicle-to-vehicle, road-to-vehicle communication);
  - High throughput, low latency;
- Medical sensor (measuring blood pressure, blood sugar, etc.)
- Smart home appliances;
- ...

### LWC initiatives

eSTREAM (2004-08), CRYPTREC, CEASAR (2014-18), ISO/EIC.

- LWC ciphers have to operate as authenticated encryption/decryption algorithms
- AE avoids chosen ciphertext attacks that take advantage against a cryptosystem by submitting carefully chosen ciphertexts and analyzing the decrypted results;
- AEAD avoids to cut-and-paste a valid ciphertext into a different context;
- LWC ciphers may operate as hash functions;
- LWC ciphers have to define unambiguously padding rules, IVs, Authenticated Associated Data;
- LWC ciphers have to provide theoretical and empirical evidence for security claims.

Image: A matrix

NIST published a call for algorithms (August 2018) and it received about 60 submissions (February 2019).

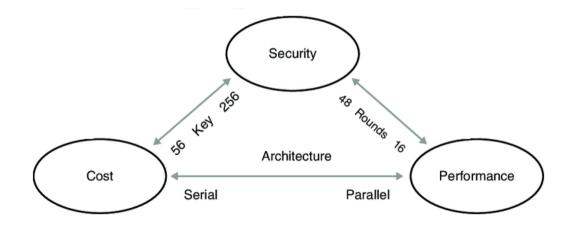
During the Round 1, several candidates were eliminated from consideration (**Feb-Aug 2019**) — forgery attacks, distinguishing attacks, undesirable properties, ...;

NIST selected the Round 2 candidates: 32 algorithms (August 2019)

The Round 2 candidates update on their algorithms — new security profs, new SW and HW implementations, new third-party analysis, etc. (Aug 2019 - March 2021).

NIST annunced the Lightweight Cryptography finalists (March 2021).

#### The finalists are


ASCON, Elephant, GIFT-COFB, Grain128-AEAD, ISAP, Photon-Beetle, Romulus, Sparkle, TinyJambu, and Xoodyak.

### Last round of the NIST LWC Standardization Process

- Finalists provided updated submission packages;
- Minor modifications, no larger modifications;
- Same submission requirements of the original call for algorithms;
- This round is expected to last about 1 year.

### The main characteristics of LWC Crypto Algorithms are:

- 4x4 SBoxes (instead of 8x8),
- bit permutations,
- many iteration of simpler rounds,
- simpler key schedules.



- 32

イロト イボト イヨト イヨト

# Concluding remarks

#### Optimizations...

- HW and SW optimizations;
- Speed and latency;
- Optimizing Primitives;

# Security...

- Linear and Differential Cryptanalysis;
- SW Implementations (bugs, flaws, unexpected behaviors, ...);
- HW Implementations (Side-channel attacks, fault attacks, ...).

### Tradeoff between...

• Security VS Cost VS Performace.

# Thanks for your attention!

http://www.di.unimi.it/visconti

э