> Display --full title
>>> Threshold Signatures
>>> with Offline Parties

Name: Alessio MeneghettiJr
Date: May 27, 2021 @ CrypTO Conference 2021

falessio .meneghetti@unitn.it

[-1$ _ [1/34]

>>> 1s -d */

1. Digital Signatures
ECDSA

2. Threshold Signatures
(2,3)-Threshold ECDSA

3. Threshold Signatures with Offline Participants
(2,3)-Threshold ECDSA with an offline participant

4. A security result

[-1$ _ [2/34]

>>> Digital Signatures

Definition
A cryptographic primitive acting as a digital counterpart of
a handwritten signature

Properties
> Non-repudiation
> Authentication
> Integrity
> Unforgeability

[1. Digital Signatures]$ _ [3/34]

>>> Digital Signatures

Key-Generation Algorithm (Alice)
> input: ()
> output: private key sk public key pk

Signing Algorithm (Alice)
> input: a message M, a private key sk

> output: a signature o of the message M

Verification Algorithm (Bob)
> input: a message M, a signature o, a public key pk

> output: True or False

[1. Digital Signatures]$ _ [4/34]

>>> ECDSA

Elliptic curves

A group (E,+) of prime order ¢ generated by a point
B = (B, By) such that the DLOG () = uB is hard to solve

ECDSA Parameters
> a base point B of E with prime order ¢

> a Hash function H

[1. Digital Signatures]$ _ [5/34]

>>> ECDSA: Key-Generation

Key-Generation (Alice)

> Input:
>0
> Procedure:
> Pick an integer u at random in the interval [1,q—1].
> Compute the point O = uB.
> Output:
> the key-pair sk =wu, pk= Q.

[1. Digital Signatures]$ _ [6/34]

>>> ECDSA: Signature Algorithm

Signing (Alice)

> Input:
> a key-pair (u, Q)
> a message digest H(M)

> Procedure:
> Pick an integer k at random in the interval [1,q—1].
> Compute the point R =k 'B.
> Compute s = k(H(M) +ru) with r =R,.

> Output:
> the signature (r,s)

[1. Digital Signatures]$ _ [7/34]

>>> ECDSA: Verification Algorithm

Verification (Bob)

> Input:
> a message M
> a signature (r,s) of M
> a public key O
> Procedure:
* Compute c; = H(M)s~! and cy =rs7!,
* Compute the point C =c1B + c2Q,

> Output:
> True if r =(C,, False otherwise

[1. Digital Signatures]$ _ [8/34]

>>> Threshold Signatures

Definition ((t,n)-Threshold Signatures)
Just like a standard digital signature, except that
> Alice is replaced by a group of n players

> At least ¢ among them have to agree in order to sign a
document

> The Key-Generation is a multi-party protocol involving
all n players

> The Signature Algorithms is a multi-party protocol
involving at least ¢ players

Remark
The verification algorithm is the same as the one of a
"standard" digital signature

[2. Threshold Signatures]$ _ [9/34]

>>> Threshold Signatures

> 1995: S. Langford:
Threshold DSS signatures without a trusted party

> 1996: R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin:
Robust threshold DSS signatures

> Boneh, Canetti, Doerner, Kondi, Lee, Lindell, MacKenzie,
Magri, Makriyannis, Narayanan, Nof, Orlandi, Peled,
Reiter, Shelat, Shlomovits,

> 2018: R. Gennaro and S. Goldfeder:
Fast multiparty threshold ECDSA with fast trustless setup

> 2021: M. Battagliola, R. Longo, A. Meneghetti, M. Sala,
Threshold ECDSA with an Offline Recovery Party

[2. Threshold Signatures]$ _ [10/34]

>>> (2, 3)-Threshold ECDSA

> Alice, Allie, Alicia share the right to sign together

> Bob uses the verification algorithm of ECDSA

Bob

[2. Threshold Signatures]$ _ [11/34]

>>> How to share a secret

Many protocols implement (some sort of) Shamir's scheme to
share a secret

Shamir's idea
> a Dealer chooses a polynomial f, such that o = f(0) € Z,
is the secret to be shared:
fx) =0+ a1z +ar®+... +az_12t!

> the Dealer sends to each player P; the value o; = f(i) € Zg

[2. Threshold Signatures]$ _ [12/34]

>>> (2,3)-Threshold ECDSA: sharing shards

03,3

02,2

[2. Threshold Signatures]$ _ [13/34]

>>> (2, 3)-Threshold ECDSA: Key-Generation

Alice Allie & Alicia
Randomly chooses:
U, mp € Zq

Computes:
u1 B — Allie, Alicia
[(X) =u +mi X
o1,1 = f1(2)

012 = f1(3) — Allie
013 = fl(l) — Alicia
r1=011+021+ 031

private key:
wlzt-xl

[2. Threshold Signatures]$ _ [14/34]

>>> (2,3)-Threshold ECDSA: Keys

> the public key is Q = u1B 4+ uoB + usB = (u1 + ug + u3)B
> the "global" private key uw = uj + ug + u3 is unknown to
anyone

> the coefficients for the private keys depend on the set
of active parties:

> if Alice and Allie want to sign,

wy = 321, Wy = —2To
> if Alice and Alicia want to sign,

wp = —17, w3 = 213

> if Allie and Alicia want to sign,

1 3
Wo = — -9, W3 = -
p) 52 3= 5%

[2. Threshold Signatures]$ _ [15/34]

>>> (2,3)-Threshold ECDSA: Keys

Example: Alice and Allie

Alice's private key: wj = 3z

Allie's private key: wy = —2x9

Suppose they are able to sum their own private keys:

w1 t+wy = 3T — 2x9
= 3(o11+021+031) —2(012+ 022+ 032)
= 3(71(2) + So(2) + 5(2) — 201(3) + F2(3) + f5(3))
= 3(ur+m1-24+uzs+ma-2+us+ms-2)
—2(uy +my - 3+ ug +mg -3+ ug +ms-3)
= Uy tuzt+uz=u

Recall
The "global" private key is u and the public key is Q) =uB

[2. Threshold Signatures]$ _ [16/34]

>>> (2,3)-Threshold ECDSA: Signature

Alice and Allie have to compute together an ECDSA signature
of M, i.e. (r,s) where

It is possible if

>
>
>
>
>

both know r
Alice knows
Allie knows
Alice knows

Allie knows

In this way
> Alice computes s; = kiH(M) + o1r
> Allie computes sy = koH(M) + oor

> 8= 81+ 89 :kH(M)—i-(k:u)r

[2. Threshold Signatures]$ _

the
the
the
the

additive
additive
additive

additive

shard ki
shard ko
shard o

shard oo

s =k(H(M) + ru) = kH(M) + (ku)r

of k=FK + ks
of k=FK + ko
of ku=o01+ o9
of ku= 01+ 09

[17/34]

>>> (2, 3)-Threshold ECDSA: how?
What Alice and Allie really know:

Alice | Allie

a random kj a random ko
her private key w; | her private key wo

Remark
w1 +wy =1u
hence
ku = (k1 + k2) (w1 + w2)
Problem

How to obtain additive shards of ku knowing additive shards

of k and u?

[2. Threshold Signatures]$ _

[18/34]

>>> Multiplicative to Additive conversion (MtA)

Setting

> Alice knows a secret aj € Z,
> Allie knows a secret as € Z,

> we think of a; and a9 as multiplicative shares of a
secret x© = ajas mod g

Result
> Alice obtains an additive secret share aléqu
> Allie obtains an additive secret share as € Zq

> a1 +as =2 mod g
Remark

This can be achieved by using partially-homomorphic
encryption schemes, such as the Paillier cryptosystem

[2. Threshold Signatures]$ _ [19/34]

>>> (2,3)-Threshold ECDSA: additive shards of ku

First MtA step
Alice | Allie

Input k1 w9 Recall: py2+vi2 = kiws
Output | p12 V1,2

Second MtA step
Alice | Allie

Input w1 ko Recall: po1 + 191 = kawr
Output V2.1 2.1
Final step
| Alice | Allie
Input k1 w1, 12,21 ko, w2, 21,012

Output | o1 = kw1 + 12+ 121 | 02 = kows + H2.1 + V12

[2. Threshold Signatures]$ _ [20/34]

>>> (2,3)-Threshold ECDSA: additive shards of ku

| Alice | Allie
Input k1, w1, p12,v21 ko, wa, p2.1,v1 2
Output | o1 = kw1 + 12 + 21 | 02 = kowa + pi21 + 12

Proof

o1+o02 = (ki +p12+v21)+ (kows + p21 +v12)
= kwi+ (2 +rvi2) + (p21 +v21) + kows

kiwy + (k‘ﬂdz) ar (k2w1) + kows

(kl == kg)(wl + w2)

= ku

[2. Threshold Signatures]$ _ [21/34]

>>> (2,3)-Threshold ECDSA: main idea

Alice and Allie have to compute together an ECDSA signature

of M, i.e. (r,s) where

s =k(H(M) + ru) = kH(M) + (ku)r

It is possible if
> both know 7r
> Alice knows the additive
> Allie knows the additive
> Alice knows the additive
> Allie knows the additive
In this way

shard ki
shard ko
shard o

shard oo

> Alice computes s; = kiH(M) + o1r
> Allie computes sy = koH(M) + oor

> 8= 81+ 89 :kH(M)—i-(k:u)r

[2. Threshold Signatures]$ _

of k=K + ko
of k=K1 + ko
of ku=o01+ o9

of ku= 01+ 09

SNENIENIEN

[22/34]

>>> (2,3)-Threshold ECDSA: main idea

Alice and Allie have to compute together an ECDSA signature

of M, i.e. (r,s) where

s =k(H(M) + ru) = kH(M) + (ku)r

It is possible if
> both know 7r
> Alice knows the additive
> Allie knows the additive
> Alice knows the additive
> Allie knows the additive
In this way

shard ki
shard ko
shard o

shard oo

> Alice computes s; = kiH(M) + o1r
> Allie computes sy = koH(M) + oor

> 8= 81+ 89 :kH(M)—i-(k:u)r

[2. Threshold Signatures]$ _

of k=K + ko
of k=K1 + ko
of ku=o01+ o9

of ku= 01+ 09

NN NN

[23/34]

>>> Threshold Signatures with offline participants

Definition (Threshold Signatures with offline participants)

Just like a standard (¢,n)-threshold digital signature, except
that

> Only t out the n parties participate in the
key-generation phase

> At least ¢ out of the m parties have to agree in order to
sign a document

[3. Threshold Signatures with Offline Participants]$ _ [24/34]

>>> (2,3)-Threshold ECDSA with an offline participant

> Three parties share the right to sign: Alice, Alicia,
Allie

> Online Parties: only Alice and Allie are actively
involved in Key-Generation and Signature phases

> Offline party: Alicia goes back online and participates
if and only when Alice (or Allie) are incapacitated

> ECDSA-compatibility: Bob uses the verification algorithm
of ECDSA

Remark
key-point: Alicia does not want to participate even in the
key-generation phase

[3. Threshold Signatures with Offline Participants]$ _ [25/34]

>>> (2, 3)-Threshold ECDSA without Alicia: setup

Alice and Allie
> Secure hash function H
> Elliptic curve E with group of points of prime order ¢

> A generator Be E

Alicia

> A key-pair (sks,pks) for a public-key cipher

[3. Threshold Signatures with Offline Participants]$ _ [26/34]

>>> Recall: (2,3)-Threshold ECDSA Key-Generation

03,3

[3. Threshold Signatures with Offline Participants]$ _ [27/34]

>>> (2,3)-Threshold ECDSA Key-Generation without Alicia

02,1

01,2

Egiy(03.2,02.3)

Eoiy(03,1,01,3)

[3. Threshold Signatures with Offline Participants]$ _ [28/34]

>>> (2,3)-Threshold ECDSA Signature without Allie

If Allie cannot participate

> Alice contacts Alicia

> Alice sends Egi,(031,013) and Eg,(032,023) to Alicia
> Alicia recover 031,013,032,023

> Alicia computes u3 starting from 031,032

> Alicia generates 033

> Alicia computes x3 =013+ 023+ 033

Finally, Alice and Alicia perform the signature algorithm by
using their private keys

w1 = —I1, w3 = 2x3

[3. Threshold Signatures with Offline Participants]$ _ [29/34]

>>> (2,3)-Threshold ECDSA with an offline participant

Definition (Unforgeability)

A (t,n)-threshold signature scheme is unforgeable if no
malicious adversary who corrupts at most ¢t — 1 players can
produce with non-negligible probability the signature on a
new message m, given the view of Threshold-Sign on input
messages mi,...,my; (which the adversary adaptively chooses),
as well as the signatures on those messages.

[4. A security resultl]$ _ [30/34]

>>> (2,3)-Threshold ECDSA with an offline participant

Decisional Diffie-Hellman (DDH) Assumption

Let
* G be a cyclic group with generator g and order n
* a, b, ¢ be random elements of Z,

Then, no efficient algorithm can distinguish between the two
distributions

(9,9% 9% g"°) and (9,9% 9% ¢°)

[4. A security resultl]$ _ [31/34]

>>> (2,3)-Threshold ECDSA with an offline participant

Strong RSA Assumption

Let
* N = pq with both p, g safe primes
* s be a random element of Z}%

Then, no efficient algorithm can find

z,e#1 such that z¢=s mod N

[4. A security resultl]$ _ [32/34]

>>> (2,3)-Threshold ECDSA with an offline participant

Theorem
Under the following hypotheses:

> ECDSA is unforgeable

> the strong RSA assumption holds
> the DDH assumption holds

> some other technical assumptions

then Threshold ECDSA protocol is unforgeable

[4. A security resultl]$ _ [33/34]

>>> Future works and open problems

* (t,n)-Threshold ECDSA with n —t offline participants
* More security analyses

* Compatibility with other known Digital Signatures

[4. A security resultl]$ _ [34/34]

> exit
>>> Thank you!

	Digital Signatures
	ECDSA

	Threshold Signatures
	(2,3)-Threshold ECDSA

	Threshold Signatures with Offline Participants
	(2,3)-Threshold ECDSA with an offline participant

	A security result

