
> Display --full title
>>> Threshold Signatures
>>> with Offline Parties

Name: Alessio Meneghetti†

Date: May 27, 2021 @ CrypTO Conference 2021

†alessio.meneghetti@unitn.it

[~]$ _ [1/34]



>>> ls -d */

1. Digital Signatures
ECDSA

2. Threshold Signatures
(2, 3)-Threshold ECDSA

3. Threshold Signatures with Offline Participants
(2, 3)-Threshold ECDSA with an offline participant

4. A security result

[~]$ _ [2/34]



>>> Digital Signatures

Definition
A cryptographic primitive acting as a digital counterpart of
a handwritten signature

Properties

> Non-repudiation
> Authentication
> Integrity
> Unforgeability

[1. Digital Signatures]$ _ [3/34]



>>> Digital Signatures

Key-Generation Algorithm (Alice)

> input: ∅
> output: private key sk public key pk

Signing Algorithm (Alice)

> input: a message M, a private key sk

> output: a signature σ of the message M

Verification Algorithm (Bob)

> input: a message M, a signature σ, a public key pk

> output: True or False

[1. Digital Signatures]$ _ [4/34]



>>> ECDSA

Elliptic curves in short Weierstrass Form: y2 = x3 + ax+ b
over a field Fp of prime order p.

The rational points are the pairs (x, y) of elements of Fp

satisfying the equation, together with one extra point at
infinity O.

Elliptic curves
A group (E,+) of prime order q generated by a point
B = (Bx, By) such that the DLOG Q = uB is hard to solve

ECDSA Parameters
> a base point B of E with prime order q

> a Hash function H

[1. Digital Signatures]$ _ [5/34]



>>> ECDSA: Key-Generation

Key-Generation (Alice)
> Input:

> ∅
> Procedure:

> Pick an integer u at random in the interval [1, q − 1].
> Compute the point Q = uB.

> Output:
> the key-pair sk = u, pk = Q.

[1. Digital Signatures]$ _ [6/34]



>>> ECDSA: Signature Algorithm

Signing (Alice)
> Input:

> a key-pair (u,Q)
> a message digest H(M)

> Procedure:
> Pick an integer k at random in the interval [1, q − 1].
> Compute the point R = k−1B.
> Compute s = k(H(M) + ru) with r = Rx.

> Output:
> the signature (r, s).

[1. Digital Signatures]$ _ [7/34]



>>> ECDSA: Verification Algorithm

Verification (Bob)
> Input:

> a message M
> a signature (r, s) of M
> a public key Q

> Procedure:
* Compute c1 = H(M)s−1 and c2 = rs−1,
* Compute the point C = c1B + c2Q,

> Output:
> True if r = Cx, False otherwise

[1. Digital Signatures]$ _ [8/34]



>>> Threshold Signatures

Definition ((t, n)-Threshold Signatures)
Just like a standard digital signature, except that
> Alice is replaced by a group of n players
> At least t among them have to agree in order to sign a
document

> The Key-Generation is a multi-party protocol involving
all n players

> The Signature Algorithms is a multi-party protocol
involving at least t players

Remark
The verification algorithm is the same as the one of a
"standard" digital signature

[2. Threshold Signatures]$ _ [9/34]



>>> Threshold Signatures

> 1995: S. Langford:
Threshold DSS signatures without a trusted party

> 1996: R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin:
Robust threshold DSS signatures

> Boneh, Canetti, Doerner, Kondi, Lee, Lindell, MacKenzie,
Magri, Makriyannis, Narayanan, Nof, Orlandi, Peled,
Reiter, Shelat, Shlomovits, . . .

> 2018: R. Gennaro and S. Goldfeder:
Fast multiparty threshold ECDSA with fast trustless setup

> 2021: M. Battagliola, R. Longo, A. Meneghetti, M. Sala,
Threshold ECDSA with an Offline Recovery Party

[2. Threshold Signatures]$ _ [10/34]



>>> (2, 3)-Threshold ECDSA

> Alice, Allie, Alicia share the right to sign together

Alice Allie

Alicia

> Bob uses the verification algorithm of ECDSA

Bob

[2. Threshold Signatures]$ _ [11/34]



>>> How to share a secret

Many protocols implement (some sort of) Shamir's scheme to
share a secret

Shamir's idea
> a Dealer chooses a polynomial f, such that σ = f(0) ∈ Zq

is the secret to be shared:

f(x) = σ + a1x+ a2x
2 + . . .+ at−1x

t−1

> the Dealer sends to each player Pi the value σi = f(i) ∈ Zq

[2. Threshold Signatures]$ _ [12/34]



>>> (2, 3)-Threshold ECDSA: sharing shards

Alice
σ1,1

Allie
σ2,2

Alicia

σ3,3

σ1,2

σ2,1
σ 1

,3

σ 3
,1

σ
2,3

σ
3,2

[2. Threshold Signatures]$ _ [13/34]



>>> (2, 3)-Threshold ECDSA: Key-Generation

Alice Allie & Alicia
Randomly chooses:
u1,m1 ∈ Zq

Computes:
u1B → Allie, Alicia
f1(X) = u1 +m1X
σ1,1 = f1(2)
σ1,2 = f1(3) → Allie
σ1,3 = f1(1) → Alicia
x1 = σ1,1 + σ2,1 + σ3,1

private key:
ω1 = t · x1

[2. Threshold Signatures]$ _ [14/34]



>>> (2, 3)-Threshold ECDSA: Keys

> the public key is Q = u1B + u2B + u3B = (u1 + u2 + u3)B

> the "global" private key u = u1 + u2 + u3 is unknown to
anyone

> the coefficients for the private keys depend on the set
of active parties:

> if Alice and Allie want to sign,

ω1 = 3x1, ω2 = −2x2

> if Alice and Alicia want to sign,

ω1 = −x1, ω3 = 2x3

> if Allie and Alicia want to sign,

ω2 = −1

2
x2, ω3 =

3

2
x3

[2. Threshold Signatures]$ _ [15/34]



>>> (2, 3)-Threshold ECDSA: Keys

Example: Alice and Allie
Alice's private key: ω1 = 3x1
Allie's private key: ω2 = −2x2
Suppose they are able to sum their own private keys:

ω1 + ω2 = 3x1 − 2x2
= 3(σ1,1 + σ2,1 + σ3,1)− 2(σ1,2 + σ2,2 + σ3,2)
= 3(f1(2) + f2(2) + f3(2))− 2(f1(3) + f2(3) + f3(3))
= 3(u1 +m1 · 2 + u2 +m2 · 2 + u3 +m3 · 2)

−2(u1 +m1 · 3 + u2 +m2 · 3 + u3 +m3 · 3)
= u1 + u2 + u3 = u

Recall
The "global" private key is u and the public key is Q = uB

[2. Threshold Signatures]$ _ [16/34]



>>> (2, 3)-Threshold ECDSA: Signature

Alice and Allie have to compute together an ECDSA signature
of M, i.e. (r, s) where

s = k(H(M) + ru) = kH(M) + (ku)r

It is possible if
> both know r

> Alice knows the additive shard k1 of k = k1 + k2

> Allie knows the additive shard k2 of k = k1 + k2

> Alice knows the additive shard σ1 of ku = σ1 + σ2

> Allie knows the additive shard σ2 of ku = σ1 + σ2

In this way
> Alice computes s1 = k1H(M) + σ1r

> Allie computes s2 = k2H(M) + σ2r

> s = s1 + s2 = kH(M) + (ku)r

[2. Threshold Signatures]$ _ [17/34]



>>> (2, 3)-Threshold ECDSA: how?

What Alice and Allie really know:

Alice Allie
a random k1 a random k2
her private key ω1 her private key ω2

Remark

ω1 + ω2 = u

hence
ku = (k1 + k2)(ω1 + ω2)

Problem
How to obtain additive shards of ku knowing additive shards
of k and u?

[2. Threshold Signatures]$ _ [18/34]



>>> Multiplicative to Additive conversion (MtA)

Setting

> Alice knows a secret a1 ∈ Zq

> Allie knows a secret a2 ∈ Zq

> we think of a1 and a2 as multiplicative shares of a
secret x = a1a2 mod q

Result
> Alice obtains an additive secret share α1 ∈ Zq

> Allie obtains an additive secret share α2 ∈ Zq

> α1 + α2 = x mod q

Remark
This can be achieved by using partially-homomorphic
encryption schemes, such as the Paillier cryptosystem

[2. Threshold Signatures]$ _ [19/34]



>>> (2, 3)-Threshold ECDSA: additive shards of ku

First MtA step
Alice Allie

Input k1 ω2

Output µ1,2 ν1,2

Recall: µ1,2 + ν1,2 = k1ω2

Second MtA step
Alice Allie

Input ω1 k2
Output ν2,1 µ2,1

Recall: µ2,1 + ν2,1 = k2ω1

Final step

Alice Allie
Input k1, ω1, µ1,2, ν2,1 k2, ω2, µ2,1, ν1,2
Output σ1 = k1ω1 + µ1,2 + ν2,1 σ2 = k2ω2 + µ2,1 + ν1,2

[2. Threshold Signatures]$ _ [20/34]



>>> (2, 3)-Threshold ECDSA: additive shards of ku

Alice Allie
Input k1, ω1, µ1,2, ν2,1 k2, ω2, µ2,1, ν1,2
Output σ1 = k1ω1 + µ1,2 + ν2,1 σ2 = k2ω2 + µ2,1 + ν1,2

Proof

σ1 + σ2 = (k1ω1 + µ1,2 + ν2,1) + (k2ω2 + µ2,1 + ν1,2)
= k1ω1 + (µ1,2 + ν1,2) + (µ2,1 + ν2,1) + k2ω2

= k1ω1 + (k1ω2) + (k2ω1) + k2ω2

= (k1 + k2)(ω1 + ω2)
= ku

[2. Threshold Signatures]$ _ [21/34]



>>> (2, 3)-Threshold ECDSA: main idea

Alice and Allie have to compute together an ECDSA signature
of M, i.e. (r, s) where

s = k(H(M) + ru) = kH(M) + (ku)r

It is possible if
> both know r

> Alice knows the additive shard k1 of k = k1 + k2 ✓
> Allie knows the additive shard k2 of k = k1 + k2 ✓
> Alice knows the additive shard σ1 of ku = σ1 + σ2 ✓
> Allie knows the additive shard σ2 of ku = σ1 + σ2 ✓

In this way
> Alice computes s1 = k1H(M) + σ1r

> Allie computes s2 = k2H(M) + σ2r

> s = s1 + s2 = kH(M) + (ku)r

[2. Threshold Signatures]$ _ [22/34]



>>> (2, 3)-Threshold ECDSA: main idea

Alice and Allie have to compute together an ECDSA signature
of M, i.e. (r, s) where

s = k(H(M) + ru) = kH(M) + (ku)r

It is possible if
> both know r ✓
> Alice knows the additive shard k1 of k = k1 + k2 ✓
> Allie knows the additive shard k2 of k = k1 + k2 ✓
> Alice knows the additive shard σ1 of ku = σ1 + σ2 ✓
> Allie knows the additive shard σ2 of ku = σ1 + σ2 ✓

In this way
> Alice computes s1 = k1H(M) + σ1r

> Allie computes s2 = k2H(M) + σ2r

> s = s1 + s2 = kH(M) + (ku)r

[2. Threshold Signatures]$ _ [23/34]



>>> Threshold Signatures with offline participants

Definition (Threshold Signatures with offline participants)
Just like a standard (t, n)-threshold digital signature, except
that
> Only t out the n parties participate in the
key-generation phase

> At least t out of the n parties have to agree in order to
sign a document

[3. Threshold Signatures with Offline Participants]$ _ [24/34]



>>> (2, 3)-Threshold ECDSA with an offline participant

> Three parties share the right to sign: Alice, Alicia,
Allie

> Online Parties: only Alice and Allie are actively
involved in Key-Generation and Signature phases

> Offline party: Alicia goes back online and participates
if and only when Alice (or Allie) are incapacitated

> ECDSA-compatibility: Bob uses the verification algorithm
of ECDSA

Remark
key-point: Alicia does not want to participate even in the
key-generation phase

[3. Threshold Signatures with Offline Participants]$ _ [25/34]



>>> (2, 3)-Threshold ECDSA without Alicia: setup

Alice and Allie
> Secure hash function H

> Elliptic curve E with group of points of prime order q

> A generator B ∈ E

Alicia
> A key-pair (sk3, pk3) for a public-key cipher

[3. Threshold Signatures with Offline Participants]$ _ [26/34]



>>> Recall: (2, 3)-Threshold ECDSA Key-Generation

Alice
σ1,1

Allie
σ3,3

Alicia

σ2,2

σ1,3

σ3,1
σ 1

,2

σ 2
,1

σ
3,2

σ
2,3

[3. Threshold Signatures with Offline Participants]$ _ [27/34]



>>> (2, 3)-Threshold ECDSA Key-Generation without Alicia

Aliceσ1,1 Allie σ2,2

σ1,2

σ2,1

Aliceσ3,1 Allie σ3,2

Esk3(σ3,1, σ1,3)

Esk3(σ3,2, σ2,3)

[3. Threshold Signatures with Offline Participants]$ _ [28/34]



>>> (2, 3)-Threshold ECDSA Signature without Allie

If Allie cannot participate

> Alice contacts Alicia
> Alice sends Esk3(σ3,1, σ1,3) and Esk3(σ3,2, σ2,3) to Alicia
> Alicia recover σ3,1, σ1,3, σ3,2, σ2,3

> Alicia computes u3 starting from σ3,1, σ3,2

> Alicia generates σ3,3

> Alicia computes x3 = σ1,3 + σ2,3 + σ3,3

Finally, Alice and Alicia perform the signature algorithm by
using their private keys

ω1 = −x1, ω3 = 2x3

[3. Threshold Signatures with Offline Participants]$ _ [29/34]



>>> (2, 3)-Threshold ECDSA with an offline participant

Definition (Unforgeability)
A (t, n)-threshold signature scheme is unforgeable if no
malicious adversary who corrupts at most t− 1 players can
produce with non-negligible probability the signature on a
new message m, given the view of Threshold-Sign on input
messages m1, . . . ,mk (which the adversary adaptively chooses),
as well as the signatures on those messages.

[4. A security result]$ _ [30/34]



>>> (2, 3)-Threshold ECDSA with an offline participant

Decisional Diffie-Hellman (DDH) Assumption
Let
* G be a cyclic group with generator g and order n

* a, b, c be random elements of Zn

Then, no efficient algorithm can distinguish between the two
distributions

(g, ga, gb, gab) and (g, ga, gb, gc)

[4. A security result]$ _ [31/34]



>>> (2, 3)-Threshold ECDSA with an offline participant

Strong RSA Assumption
Let
* N = pq with both p, q safe primes
* s be a random element of Z∗

N

Then, no efficient algorithm can find

x, e ̸= 1 such that xe = s mod N

[4. A security result]$ _ [32/34]



>>> (2, 3)-Threshold ECDSA with an offline participant

Theorem
Under the following hypotheses:
> ECDSA is unforgeable
> the strong RSA assumption holds
> the DDH assumption holds
> some other technical assumptions

then Threshold ECDSA protocol is unforgeable

[4. A security result]$ _ [33/34]



>>> Future works and open problems

* (t, n)-Threshold ECDSA with n− t offline participants

* More security analyses

* Compatibility with other known Digital Signatures

[4. A security result]$ _ [34/34]



> exit
>>> Thank you!


	Digital Signatures
	ECDSA

	Threshold Signatures
	(2,3)-Threshold ECDSA

	Threshold Signatures with Offline Participants
	(2,3)-Threshold ECDSA with an offline participant

	A security result

