> Display --full title

>>> Threshold Signatures
>>> with Offline Parties
Name: Alessio Meneghetti ${ }^{\dagger}$
Date: May 27, 2021 @ CrypTO Conference 2021
${ }^{\dagger}$ alessio.meneghetti@unitn.it
>>> ls -d */

1. Digital Signatures ECDSA
2. Threshold Signatures
(2,3)-Threshold ECDSA
3. Threshold Signatures with Offline Participants (2,3)-Threshold ECDSA with an offline participant
4. A security result

A cryptographic primitive acting as a digital counterpart of
a handwritten signature
Properties
> Non-repudiation
> Authentication
> Integrity
> Unforgeability

Key-Generation Algorithm (Alice)
> input: \emptyset
> output: private key sk public key pk

Signing Algorithm (Alice)
> input: a message M, a private key sk
> output: a signature σ of the message M

Verification Algorithm (Bob)
> input: a message M, a signature σ, a public key pk
> output: True or False

>>> ECDSA

Elliptic curves in short Weierstrass Form: $y^{2}=x^{3}+a x+b$ over a field \mathbb{F}_{p} of prime order p.

The rational points are the pairs (x, y) of elements of \mathbb{F}_{p} satisfying the equation, together with one extra point at infinity \mathcal{O}.

Elliptic curves
A group $(E,+)$ of prime order q generated by a point $B=\left(B_{x}, B_{y}\right)$ such that the DLOG $Q=u B$ is hard to solve

ECDSA Parameters

> a base point B of E with prime order q
> a Hash function H
>>> ECDSA: Key-Generation

Key-Generation (Alice)
> Input:
$>\emptyset$
> Procedure:
> Pick an integer u at random in the interval $[1, q-1]$.
> Compute the point $\mathcal{Q}=u B$.
> Output:
> the key-pair $s k=u, p k=\mathcal{Q}$.
>>> ECDSA: Signature Algorithm

Signing (Alice)
> Input:
> a key-pair (u, \mathcal{Q})
> a message digest $\mathrm{H}(M)$
> Procedure:
> Pick an integer k at random in the interval $[1, q-1]$.
> Compute the point $\mathcal{R}=k^{-1} B$.
$>$ Compute $s=k(\mathrm{H}(M)+r u)$ with $r=\mathcal{R}_{x}$.
> Output:
> the signature (r, s).

>>> ECDSA: Verification Algorithm

Verification (Bob)
> Input:
> a message M
> a signature (r, s) of M
> a public key \mathcal{Q}
> Procedure:

* Compute $c_{1}=\mathrm{H}(M) s^{-1}$ and $c_{2}=r s^{-1}$,
* Compute the point $\mathcal{C}=c_{1} B+c_{2} \mathcal{Q}$,
> Output:
> True if $r=\mathcal{C}_{x}$, False otherwise

Definition (($t, n)$-Threshold Signatures)
Just like a standard digital signature, except that
> Alice is replaced by a group of n players
> At least t among them have to agree in order to sign a document
> The Key-Generation is a multi-party protocol involving all n players
> The Signature Algorithms is a multi-party protocol involving at least t players

Remark
The verification algorithm is the same as the one of a "standard" digital signature
> 1995: S. Langford: Threshold DSS signatures without a trusted party
> 1996: R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin: Robust threshold DSS signatures
> Boneh, Canetti, Doerner, Kondi, Lee, Lindell, MacKenzie, Magri, Makriyannis, Narayanan, Nof, Orlandi, Peled, Reiter, Shelat, Shlomovits, ...
> 2018: R. Gennaro and S. Goldfeder: Fast multiparty threshold ECDSA with fast trustless setup
> 2021: M. Battagliola, R. Longo, A. Meneghetti, M. Sala, Threshold ECDSA with an Offline Recovery Party
>>> $(2,3)$-Threshold ECDSA
> Alice, Allie, Alicia share the right to sign together

> Bob uses the verification algorithm of ECDSA

>>> How to share a secret

Many protocols implement (some sort of) Shamir's scheme to share a secret

Shamir's idea
> a Dealer chooses a polynomial f, such that $\sigma=f(0) \in \mathbb{Z}_{q}$ is the secret to be shared:

$$
f(x)=\sigma+a_{1} x+a_{2} x^{2}+\ldots+a_{t-1} x^{t-1}
$$

$>$ the Dealer sends to each player P_{i} the value $\sigma_{i}=f(i) \in \mathbb{Z}_{q}$
>>> $(2,3)-T h r e s h o l d ~ E C D S A: ~ s h a r i n g ~ s h a r d s ~$

>>> (2,3)-Threshold ECDSA: Key-Generation

Alice	Allie \& Alicia
Randomly chooses:	
$u_{1}, m_{1} \in \mathbb{Z}_{q}$	
Computes:	
$u_{1} B$	\rightarrow Allie, Alicia
$f_{1}(X)=u_{1}+m_{1} X$	
$\sigma_{1,1}=f_{1}(2)$	\rightarrow Allie
$\sigma_{1,2}=f_{1}(3)$	\rightarrow Alicia
$\sigma_{1,3}=f_{1}(1)$	
$x_{1}=\sigma_{1,1}+\sigma_{2,1}+\sigma_{3,1}$	
private key:	
$\omega_{1}=t \cdot x_{1}$	

>>> $(2,3)$-Threshold ECDSA: Keys
$>$ the public key is $Q=u_{1} B+u_{2} B+u_{3} B=\left(u_{1}+u_{2}+u_{3}\right) B$
> the "global" private key $u=u_{1}+u_{2}+u_{3}$ is unknown to anyone
> the coefficients for the private keys depend on the set of active parties:
> if Alice and Allie want to sign,

$$
\omega_{1}=3 x_{1}, \quad \omega_{2}=-2 x_{2}
$$

> if Alice and Alicia want to sign,

$$
\omega_{1}=-x_{1}, \quad \omega_{3}=2 x_{3}
$$

> if Allie and Alicia want to sign,

$$
\omega_{2}=-\frac{1}{2} x_{2}, \quad \omega_{3}=\frac{3}{2} x_{3}
$$

>>> (2, 3)-Threshold ECDSA: Keys

Example: Alice and Allie
Alice's private key: $\omega_{1}=3 x_{1}$
Allie's private key: $\omega_{2}=-2 x_{2}$
Suppose they are able to sum their own private keys:

$$
\begin{aligned}
\omega_{1}+\omega_{2} & =3 x_{1}-2 x_{2} \\
& =3\left(\sigma_{1,1}+\sigma_{2,1}+\sigma_{3,1}\right)-2\left(\sigma_{1,2}+\sigma_{2,2}+\sigma_{3,2}\right) \\
& =3\left(f_{1}(2)+f_{2}(2)+f_{3}(2)\right)-2\left(f_{1}(3)+f_{2}(3)+f_{3}(3)\right) \\
& =3\left(u_{1}+m_{1} \cdot 2+u_{2}+m_{2} \cdot 2+u_{3}+m_{3} \cdot 2\right) \\
& \quad-2\left(u_{1}+m_{1} \cdot 3+u_{2}+m_{2} \cdot 3+u_{3}+m_{3} \cdot 3\right) \\
& =u_{1}+u_{2}+u_{3}=u
\end{aligned}
$$

Recall
The "global" private key is u and the public key is $Q=u B$

>>> $(2,3)$-Threshold ECDSA: Signature

Alice and Allie have to compute together an ECDSA signature of M, i.e. (r, s) where

$$
s=k(\mathrm{H}(M)+r u)=k \mathrm{H}(M)+(k u) r
$$

It is possible if
> both know r
> Alice knows the additive shard k_{1} of $k=k_{1}+k_{2}$
> Allie knows the additive shard k_{2} of $k=k_{1}+k_{2}$
> Alice knows the additive shard σ_{1} of $k u=\sigma_{1}+\sigma_{2}$
> Allie knows the additive shard σ_{2} of $k u=\sigma_{1}+\sigma_{2}$ In this way
> Alice computes $s_{1}=k_{1} \mathrm{H}(M)+\sigma_{1} r$
> Allie computes $s_{2}=k_{2} \mathrm{H}(M)+\sigma_{2} r$
$>s=s_{1}+s_{2}=k H(M)+(k u) r$
>>> $(2,3)$-Threshold ECDSA: how?
What Alice and Allie really know:

Alice	Allie
a random k_{1}	a random k_{2}
her private key ω_{1}	her private key ω_{2}

Remark

$$
\omega_{1}+\omega_{2}=u
$$

hence

$$
k u=\left(k_{1}+k_{2}\right)\left(\omega_{1}+\omega_{2}\right)
$$

Problem

How to obtain additive shards of ku knowing additive shards of k and u ?
>>> Multiplicative to Additive conversion (MtA)
Setting
> Alice knows a secret $a_{1} \in \mathbb{Z}_{q}$
$>$ Allie knows a secret $a_{2} \in \mathbb{Z}_{q}$
> we think of a_{1} and a_{2} as multiplicative shares of a secret $x=a_{1} a_{2} \bmod q$

Result

$>$ Alice obtains an additive secret share $\alpha_{1} \in \mathbb{Z}_{q}$
> Allie obtains an additive secret share $\alpha_{2} \in \mathbb{Z}_{q}$
$>\alpha_{1}+\alpha_{2}=x \bmod q$

Remark

This can be achieved by using partially-homomorphic encryption schemes, such as the Paillier cryptosystem
>>> $(2,3)$-Threshold ECDSA: additive shards of $k u$

First MtA step

	Alice	Allie
Input	k_{1}	ω_{2}
Output	$\mu_{1,2}$	$\nu_{1,2}$

Recall: $\mu_{1,2}+\nu_{1,2}=k_{1} \omega_{2}$

Second MtA step

	Alice	Allie
Input	ω_{1}	k_{2}
Output	$\nu_{2,1}$	$\mu_{2,1}$

Recall: $\mu_{2,1}+\nu_{2,1}=k_{2} \omega_{1}$

Final step

	Alice	Allie
Input	$k_{1}, \omega_{1}, \mu_{1,2}, \nu_{2,1}$	$k_{2}, \omega_{2}, \mu_{2,1}, \nu_{1,2}$
Output	$\sigma_{1}=k_{1} \omega_{1}+\mu_{1,2}+\nu_{2,1}$	$\sigma_{2}=k_{2} \omega_{2}+\mu_{2,1}+\nu_{1,2}$

>>> $(2,3)$-Threshold ECDSA: additive shards of $k u$

	Alice	Allie
Input	$k_{1}, \omega_{1}, \mu_{1,2}, \nu_{2,1}$	$k_{2}, \omega_{2}, \mu_{2,1}, \nu_{1,2}$
Output	$\sigma_{1}=k_{1} \omega_{1}+\mu_{1,2}+\nu_{2,1}$	$\sigma_{2}=k_{2} \omega_{2}+\mu_{2,1}+\nu_{1,2}$

Proof

$$
\begin{aligned}
\sigma_{1}+\sigma_{2} & =\left(k_{1} \omega_{1}+\mu_{1,2}+\nu_{2,1}\right)+\left(k_{2} \omega_{2}+\mu_{2,1}+\nu_{1,2}\right) \\
& =k_{1} \omega_{1}+\left(\mu_{1,2}+\nu_{1,2}\right)+\left(\mu_{2,1}+\nu_{2,1}\right)+k_{2} \omega_{2} \\
& =k_{1} \omega_{1}+\left(k_{1} \omega_{2}\right)+\left(k_{2} \omega_{1}\right)+k_{2} \omega_{2} \\
& =\left(k_{1}+k_{2}\right)\left(\omega_{1}+\omega_{2}\right) \\
& =k u
\end{aligned}
$$

>>> $(2,3)$-Threshold ECDSA: main idea
Alice and Allie have to compute together an ECDSA signature of M, i.e. (r, s) where

$$
s=k(\mathrm{H}(M)+r u)=k \mathrm{H}(M)+(k u) r
$$

It is possible if
> both know r
> Alice knows the additive shard k_{1} of $k=k_{1}+k_{2}$
> Allie knows the additive shard k_{2} of $k=k_{1}+k_{2}$
> Alice knows the additive shard σ_{1} of $k u=\sigma_{1}+\sigma_{2}$
> Allie knows the additive shard σ_{2} of $k u=\sigma_{1}+\sigma_{2}$
In this way
> Alice computes $s_{1}=k_{1} \mathrm{H}(M)+\sigma_{1} r$
> Allie computes $s_{2}=k_{2} \mathrm{H}(M)+\sigma_{2} r$
$>s=s_{1}+s_{2}=k \mathrm{H}(M)+(k u) r$
>>> $(2,3)$-Threshold ECDSA: main idea
Alice and Allie have to compute together an ECDSA signature of M, i.e. (r, s) where

$$
s=k(\mathrm{H}(M)+r u)=k \mathrm{H}(M)+(k u) r
$$

It is possible if
> both know r
> Alice knows the additive shard k_{1} of $k=k_{1}+k_{2}$
> Allie knows the additive shard k_{2} of $k=k_{1}+k_{2}$
> Alice knows the additive shard σ_{1} of $k u=\sigma_{1}+\sigma_{2}$
> Allie knows the additive shard σ_{2} of $k u=\sigma_{1}+\sigma_{2}$
In this way
> Alice computes $s_{1}=k_{1} \mathrm{H}(M)+\sigma_{1} r$
$>$ Allie computes $s_{2}=k_{2} \mathrm{H}(M)+\sigma_{2} r$
$>s=s_{1}+s_{2}=k \mathrm{H}(M)+(k u) r$
>>> Threshold Signatures with offline participants

Definition (Threshold Signatures with offline participants) Just like a standard (t, n)-threshold digital signature, except that
> Only t out the n parties participate in the key-generation phase
> At least t out of the n parties have to agree in order to sign a document
>>> (2,3)-Threshold ECDSA with an offline participant
> Three parties share the right to sign: Alice, Alicia, Allie
> Online Parties: only Alice and Allie are actively involved in Key-Generation and Signature phases
> Offline party: Alicia goes back online and participates if and only when Alice (or Allie) are incapacitated
> ECDSA-compatibility: Bob uses the verification algorithm of ECDSA

Remark

key-point: Alicia does not want to participate even in the key-generation phase
>>> (2,3)-Threshold ECDSA without Alicia: setup

Alice and Allie
> Secure hash function H
> Elliptic curve E with group of points of prime order q
$>$ A generator $B \in E$

Alicia
> A key-pair $\left(s k_{3}, p k_{3}\right)$ for a public-key cipher
>>> Recall: $(2,3)$-Threshold ECDSA Key-Generation

>>> (2,3)-Threshold ECDSA Key-Generation without Alicia

>>> (2,3)-Threshold ECDSA Signature without Allie

If Allie cannot participate
> Alice contacts Alicia
$>$ Alice sends $E_{s k_{3}}\left(\sigma_{3,1}, \sigma_{1,3}\right)$ and $E_{s k_{3}}\left(\sigma_{3,2}, \sigma_{2,3}\right)$ to Alicia
$>$ Alicia recover $\sigma_{3,1}, \sigma_{1,3}, \sigma_{3,2}, \sigma_{2,3}$
> Alicia computes u_{3} starting from $\sigma_{3,1}, \sigma_{3,2}$
> Alicia generates $\sigma_{3,3}$
> Alicia computes $x_{3}=\sigma_{1,3}+\sigma_{2,3}+\sigma_{3,3}$
Finally, Alice and Alicia perform the signature algorithm by using their private keys

$$
\omega_{1}=-x_{1}, \quad \omega_{3}=2 x_{3}
$$

A (t, n)-threshold signature scheme is unforgeable if no malicious adversary who corrupts at most $t-1$ players can produce with non-negligible probability the signature on a new message m, given the view of Threshold-Sign on input messages m_{1}, \ldots, m_{k} (which the adversary adaptively chooses), as well as the signatures on those messages.
>>> $(2,3)$-Threshold ECDSA with an offline participant

Decisional Diffie-Hellman (DDH) Assumption
Let

* \mathbb{G} be a cyclic group with generator g and order n
* a, b, c be random elements of \mathbb{Z}_{n}

Then, no efficient algorithm can distinguish between the two distributions

$$
\left(g, g^{a}, g^{b}, g^{a b}\right) \quad \text { and } \quad\left(g, g^{a}, g^{b}, g^{c}\right)
$$

>>> $(2,3)$-Threshold ECDSA with an offline participant

Strong RSA Assumption
Let

* $N=p q$ with both p, q safe primes
* s be a random element of \mathbb{Z}_{N}^{*}

Then, no efficient algorithm can find

$$
x, e \neq 1 \quad \text { such that } \quad x^{e}=s \quad \bmod N
$$

>>> $(2,3)$-Threshold ECDSA with an offline participant

Theorem

Under the following hypotheses:
> ECDSA is unforgeable
> the strong RSA assumption holds
> the DDH assumption holds
> some other technical assumptions
then Threshold ECDSA protocol is unforgeable
>>> Future works and open problems

* (t, n)-Threshold ECDSA with $n-t$ offline participants
* More security analyses
* Compatibility with other known Digital Signatures
> exit
>>> Thank you!

