> Display --full title

>>> Threshold Signatures

>>> with Offline Parties

Name: Alessio Meneghetti[†] Date: May 27, 2021 @ CrypTO Conf<u>erence 2021</u>

[†]alessio.meneghetti@unitn.it

>>> ls -d */

- 1. Digital Signatures ECDSA
- 2. Threshold Signatures (2,3)-Threshold ECDSA
- 3. Threshold Signatures with Offline Participants (2,3)-Threshold ECDSA with an offline participant
- 4. A security result

>>> Digital Signatures

Definition

- A cryptographic primitive acting as a digital counterpart of
- a handwritten signature

Properties

- > Non-repudiation
- > Authentication
- > Integrity
- > Unforgeability

>>> Digital Signatures

Key-Generation Algorithm (Alice)

- > input: ∅
- > output: private key sk public key pk

Signing Algorithm (Alice)

- > input: a message M, a private key sk
- > output: a signature σ of the message M

Verification Algorithm (Bob)

- > input: a message M, a signature σ , a public key pk
- > output: True or False

>>> ECDSA

Elliptic curves in short Weierstrass Form: $y^2 = x^3 + ax + b$ over a field \mathbb{F}_p of prime order p.

The rational points are the pairs (x, y) of elements of \mathbb{F}_p satisfying the equation, together with one extra point at infinity \mathcal{O} .

Elliptic curves

A group (E,+) of prime order q generated by a point $B=(B_x,B_y)$ such that the DLOG Q=uB is hard to solve

ECDSA Parameters

- > a base point B of E with prime order $q_{
 m b}$
- > a Hash function H

>>> ECDSA: Key-Generation

Key-Generation (Alice)

- > Input:
 - **>** Ø
- > Procedure:
 - > Pick an integer u at random in the interval [1, q-1].
 - > Compute the point $\mathcal{Q} = uB$.
- > Output:
 - > the key-pair sk = u, pk = Q.

>>> ECDSA: Signature Algorithm

Signing (Alice)

> Input:

- > a key-pair (u, Q)
- > a message digest $\mathrm{H}(M)$

> Procedure:

- > Pick an integer k at random in the interval [1, q-1].
- > Compute the point $\mathcal{R}=k^{-1}B$.
- > Compute $s = k(\mathbf{H}(M) + ru)$ with $r = \mathcal{R}_x$.

> Output:

> the signature (r,s).

>>> ECDSA: Verification Algorithm

Verification (Bob)

> Input:

- > a message M
- > a signature (r,s) of ${\cal M}$
- > a public key ${\cal Q}$
- > Procedure:
 - * Compute $c_1 = \mathrm{H}(M)s^{-1}$ and $c_2 = rs^{-1}$,
 - * Compute the point $\mathcal{C}=c_1B+c_2\mathcal{Q}$,

> Output:

> True if $r=\mathcal{C}_x$, False otherwise

>>> Threshold Signatures

Definition ((t, n)-Threshold Signatures)

Just like a standard digital signature, except that

- > Alice is replaced by a group of n players
- > At least t among them have to agree in order to sign a document
- > The Key-Generation is a multi-party protocol involving all n players
- > The Signature Algorithms is a multi-party protocol involving at least t players

Remark

The verification algorithm is the same as the one of a "standard" digital signature

>>> Threshold Signatures

- > 1995: S. Langford: Threshold DSS signatures without a trusted party
- > 1996: R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin: Robust threshold DSS signatures
- > Boneh, Canetti, Doerner, Kondi, Lee, Lindell, MacKenzie, Magri, Makriyannis, Narayanan, Nof, Orlandi, Peled, Reiter, Shelat, Shlomovits, ...
- > 2018: R. Gennaro and S. Goldfeder: Fast multiparty threshold ECDSA with fast trustless setup
- > 2021: M. Battagliola, R. Longo, A. Meneghetti, M. Sala, Threshold ECDSA with an Offline Recovery Party

- >>> (2,3)-Threshold ECDSA
 - > Alice, Allie, Alicia share the right to sign together

> Bob uses the verification algorithm of ECDSA

>>> How to share a secret

Many protocols implement (some sort of) Shamir's scheme to share a secret

Shamir's idea

> a Dealer chooses a polynomial f, such that $\sigma = f(0) \in \mathbb{Z}_q$ is the secret to be shared:

$$f(x) = \sigma + a_1 x + a_2 x^2 + \ldots + a_{t-1} x^{t-1}$$

> the Dealer sends to each player P_i the value $\sigma_i = f(i) \in \mathbb{Z}_q$

>>> (2,3)-Threshold ECDSA: sharing shards

>>> (2,3)-Threshold ECDSA: Key-Generation

Alice	Allie & Alicia
Randomly chooses:	
$u_1, m_1 \in \mathbb{Z}_q$	
Computes:	
u_1B	ightarrow Allie, Alicia
$f_1(X) = u_1 + m_1 X$	
$\sigma_{1,1} = f_1(2)$	
$\sigma_{1,2} = f_1(3)$	ightarrow Allie
$\sigma_{1,3} = f_1(1)$	ightarrow Alicia
$x_1 = \sigma_{1,1} + \sigma_{2,1} + \sigma_{3,1}$	
private key:	
$\omega_1 = t \cdot x_1$	

- >>> (2,3)-Threshold ECDSA: Keys
 - > the public key is $Q = u_1B + u_2B + u_3B = (u_1 + u_2 + u_3)B$
 - > the "global" private key $u = u_1 + u_2 + u_3$ is unknown to anyone
 - > the coefficients for the private keys depend on the set of active parties:
 - > if Alice and Allie want to sign,

$$\omega_1 = 3x_1, \qquad \omega_2 = -2x_2$$

> if Alice and Alicia want to sign,

$$\omega_1 = -x_1, \qquad \omega_3 = 2x_3$$

> if Allie and Alicia want to sign,

$$\omega_2 = -\frac{1}{2}x_2, \qquad \omega_3 = \frac{3}{2}x_3$$

[2. Threshold Signatures]\$ _

>>> (2,3)-Threshold ECDSA: Keys

Example: Alice and Allie

Alice's private key: $\omega_1 = 3x_1$ Allie's private key: $\omega_2 = -2x_2$ Suppose they are able to sum their own private keys:

$$\begin{split} \omega_1 + \omega_2 &= 3x_1 - 2x_2 \\ &= 3(\sigma_{1,1} + \sigma_{2,1} + \sigma_{3,1}) - 2(\sigma_{1,2} + \sigma_{2,2} + \sigma_{3,2}) \\ &= 3(f_1(2) + f_2(2) + f_3(2)) - 2(f_1(3) + f_2(3) + f_3(3)) \\ &= 3(u_1 + m_1 \cdot 2 + u_2 + m_2 \cdot 2 + u_3 + m_3 \cdot 2) \\ &\quad -2(u_1 + m_1 \cdot 3 + u_2 + m_2 \cdot 3 + u_3 + m_3 \cdot 3) \\ &= u_1 + u_2 + u_3 = u \end{split}$$

Recall

The "global" private key is u and the public key is Q = uB

>>> (2,3)-Threshold ECDSA: Signature

Alice and Allie have to compute together an ECDSA signature of $M\,\textsc{,}$ i.e. (r,s) where

$$s = k(\mathbf{H}(M) + ru) = k\mathbf{H}(M) + (ku)r$$

It is possible if

- > both know r
- > Alice knows the additive shard k_1 of $k=k_1+k_2$
- > Allie knows the additive shard k_2 of $k=k_1+k_2$
- > Alice knows the additive shard σ_1 of $ku=\sigma_1+\sigma_2$
- > Allie knows the additive shard σ_2 of $ku=\sigma_1+\sigma_2$

In this way

- > Alice computes $s_1 = k_1 H(M) + \sigma_1 r$
- > Allie computes $s_2 = k_2 H(M) + \sigma_2 r$
- > $s = s_1 + s_2 = k H(M) + (ku)r$

>>> (2,3)-Threshold ECDSA: how?

What Alice and Allie really know:

Alice	Allie
a random k_1	a random k_2
her private key ω_1	her private key ω_2

Remark

 $\omega_1 + \omega_2 = u$

hence

$$ku = (k_1 + k_2)(\omega_1 + \omega_2)$$

Problem

How to obtain additive shards of ku knowing additive shards of k and u?

[2. Threshold Signatures]\$ _

>>> Multiplicative to Additive conversion (MtA)

Setting

- > Alice knows a secret $a_1 \in \mathbb{Z}_q$
- > Allie knows a secret $a_2 \in \mathbb{Z}_q$
- > we think of a_1 and a_2 as multiplicative shares of a secret $x = a_1 a_2 \mod q$

Result

- > Alice obtains an additive secret share $lpha_1 \in \mathbb{Z}_q$
- > Allie obtains an additive secret share $lpha_2\in\mathbb{Z}_q$
- > $\alpha_1 + \alpha_2 = x \mod q$

Remark

This can be achieved by using partially-homomorphic encryption schemes, such as the Paillier cryptosystem >>> (2,3)-Threshold ECDSA: additive shards of ku

First MtA step

	Alice	Allie
Input	k_1	ω_2
Output	$\mu_{1,2}$	$ u_{1,2} $

Recall: $\mu_{1,2} +
u_{1,2} = k_1 \omega_2$

Second MtA step

	Alice	Allie
Input	ω_1	k_2
Output	$ u_{2,1} $	$\mu_{2,1}$

Recall: $\mu_{2,1} + \nu_{2,1} = \overline{k_2 \omega_1}$

Final step

	Alice	Allie
Input	$k_1, \omega_1, \mu_{1,2}, u_{2,1}$	$k_2, \omega_2, \mu_{2,1}, u_{1,2}$
Output	$\sigma_1 = k_1 \omega_1 + \mu_{1,2} + \nu_{2,1}$	$\sigma_2 = k_2 \omega_2 + \mu_{2,1} + \nu_{1,2}$

>>> (2,3)-Threshold ECDSA: additive shards of ku

	Alice	Allie
Input	$k_1, \omega_1, \mu_{1,2}, u_{2,1}$	$k_2, \omega_2, \mu_{2,1}, u_{1,2}$
Output	$\sigma_1 = k_1 \omega_1 + \mu_{1,2} + \nu_{2,1}$	$\sigma_2 = k_2 \omega_2 + \mu_{2,1} + \nu_{1,2}$

Proof

$$\begin{aligned} \sigma_1 + \sigma_2 &= (k_1\omega_1 + \mu_{1,2} + \nu_{2,1}) + (k_2\omega_2 + \mu_{2,1} + \nu_{1,2}) \\ &= k_1\omega_1 + (\mu_{1,2} + \nu_{1,2}) + (\mu_{2,1} + \nu_{2,1}) + k_2\omega_2 \\ &= k_1\omega_1 + (k_1\omega_2) + (k_2\omega_1) + k_2\omega_2 \\ &= (k_1 + k_2)(\omega_1 + \omega_2) \\ &= ku \end{aligned}$$

>>> (2,3)-Threshold ECDSA: main idea

Alice and Allie have to compute together an ECDSA signature of $M\,\text{, i.e. }(r,s)$ where

$$s = k(\mathbf{H}(M) + ru) = k\mathbf{H}(M) + (ku)r$$

It is possible if

- > both know r
- > Alice knows the additive shard k_1 of $k=k_1+k_2$
- > Allie knows the additive shard k_2 of $k=k_1+k_2$
- > Alice knows the additive shard σ_1 of $ku=\sigma_1+\sigma_2$
- > Allie knows the additive shard σ_2 of $ku=\sigma_1+\sigma_2$

In this way

- > Alice computes $s_1 = k_1 H(M) + \sigma_1 r$
- > Allie computes $s_2 = k_2 H(M) + \sigma_2 r$
- > $s = s_1 + s_2 = k H(M) + (ku)r$

 \checkmark

./

 \checkmark

 \checkmark

>>> (2,3)-Threshold ECDSA: main idea

Alice and Allie have to compute together an ECDSA signature of $M\,\text{, i.e. }(r,s)$ where

$$s = k(\mathbf{H}(M) + ru) = k\mathbf{H}(M) + (ku)r$$

It is possible if

- > both know r
- > Alice knows the additive shard k_1 of $k=k_1+k_2$
- > Allie knows the additive shard k_2 of $k=k_1+k_2$
- > Alice knows the additive shard σ_1 of $ku=\sigma_1+\sigma_2$
- > Allie knows the additive shard σ_2 of $ku=\sigma_1+\sigma_2$

In this way

- > Alice computes $s_1 = k_1 H(M) + \sigma_1 r$
- > Allie computes $s_2 = k_2 H(M) + \sigma_2 r$
- > $s = s_1 + s_2 = k H(M) + (ku)r$

 \checkmark

 \checkmark

 \checkmark

>>> Threshold Signatures with offline participants

Definition (Threshold Signatures with offline participants) Just like a standard (t,n)-threshold digital signature, except that

- > Only t out the n parties participate in the key-generation phase
- > At least t out of the n parties have to agree in order to sign a document

- > Three parties share the right to sign: Alice, Alicia, Allie
- > Online Parties: only Alice and Allie are actively involved in Key-Generation and Signature phases
- > Offline party: Alicia goes back online and participates if and only when Alice (or Allie) are incapacitated
- > ECDSA-compatibility: Bob uses the verification algorithm of ECDSA

Remark

key-point: Alicia does not want to participate even in the key-generation phase

^{[3.} Threshold Signatures with Offline Participants]\$ _

>>> (2,3)-Threshold ECDSA without Alicia: setup

Alice and Allie

- > Secure hash function H
- > Elliptic curve E with group of points of prime order q
- > A generator $B \in E$

Alicia

> A key-pair (sk_3, pk_3) for a public-key cipher

>>> Recall: (2,3)-Threshold ECDSA Key-Generation

>>> (2,3)-Threshold ECDSA Key-Generation without Alicia

>>> (2,3)-Threshold ECDSA Signature without Allie

If Allie cannot participate

- > Alice contacts Alicia
- > Alice sends $E_{sk_3}(\sigma_{3,1},\sigma_{1,3})$ and $E_{sk_3}(\sigma_{3,2},\sigma_{2,3})$ to Alicia
- > Alicia recover $\sigma_{3,1}, \sigma_{1,3}, \sigma_{3,2}, \sigma_{2,3}$
- > Alicia computes u_3 starting from $\sigma_{3,1},\sigma_{3,2}$
- > Alicia generates $\sigma_{3,3}$

> Alicia computes $\overline{x_3 = \sigma_{1,3} + \sigma_{2,3} + \sigma_{3,3}}$

Finally, Alice and Alicia perform the signature algorithm by using their private keys

$$\omega_1 = -x_1, \qquad \omega_3 = 2x_3$$

[3. Threshold Signatures with Offline Participants]\$ _

Definition (Unforgeability)

A (t,n)-threshold signature scheme is unforgeable if no malicious adversary who corrupts at most t-1 players can produce with non-negligible probability the signature on a new message m, given the view of Threshold-Sign on input messages m_1, \ldots, m_k (which the adversary adaptively chooses), as well as the signatures on those messages.

Decisional Diffie-Hellman (DDH) Assumption Let

- * ${\mathbb G}$ be a cyclic group with generator g and order n
- * a, b, c be random elements of \mathbb{Z}_n

Then, no efficient algorithm can distinguish between the two distributions

$$(g,g^a,g^b,g^{ab})$$
 and (g,g^a,g^b,g^c)

Strong RSA Assumption

Let

*
$$N = pq$$
 with both p , q safe primes

* s be a random element of \mathbb{Z}_N^*

Then, no efficient algorithm can find

$$x, e \neq 1$$
 such that $x^e = s \mod N$

Theorem

Under the following hypotheses:

- > ECDSA is unforgeable
- > the strong RSA assumption holds
- > the DDH assumption holds
- > some other technical assumptions

then Threshold ECDSA protocol is unforgeable

>>> Future works and open problems

- * (t,n)-Threshold ECDSA with n-t offline participants
- * More security analyses
- * Compatibility with other known Digital Signatures

> exit
>>> Thank you!