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Polynomial maps in Cryptography and Coding Theory

S-boxes

Hidden Field Equation cryptosystem

Reed-Solomon Codes

Constructions of Locally Recoverable Codes (connections
with PIR)

...
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Polynomial maps over finite fields

Let q be a prime power and Fq be the finite field of order q.
Any map from Fq to Fq is actually a polynomial map by
Lagrange interpolation:

f(x) =
∑
a∈Fq

∏
b∈Fq ,b 6=a(x− b)∏
b∈Fq ,b6=a(a− b)

f(a)
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So, why do I care about saying “polynomial maps”?

We just saw that restricting to polynomials is no restriction,
every map is a polynomial.

In this framework it makes no
sense to ask how does a polynomial over a finite field
behaves as a map.
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Action of polynomial maps over large finite fields

Let f ∈ Fq[x] and consider f as a map over Fq. We want to
understand what is the behaviour of f in the regime
q >> deg(f) (for example when looking at a large extension
field of Fq).

For example, you might want to understand when f is a
permutation and what is its non-linearity (S-boxes) or you
might want to estimate the number of subsets A ⊆ Fqn such
that |A| = deg(f) and f is constant on A (constructions of
locally recoverable codes).
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The method

Let Fq(t) be the field of rational functions over Fq in the
variable t. Let M be the splitting field of f(X)− t over Fq(t).

Suppose that M has field of constants Fq.
Let G be the Galois group of f(X)− t, i.e. G = Aut(M/Fq(t)).
Notice that G acts on the roots {z1, . . . zdeg(f)} ⊆M of
f(X)− t.
Fact: the number of t0 ∈ Fq such that f(X)− t0 =

∏`
i=1 pi(x)

is “roughly” (|S|/|G|)q where S is the subset of elements of G
that have cycle decomposition

(−− · · ·−)︸ ︷︷ ︸
deg(p1(x))

(−− · · ·−)︸ ︷︷ ︸
deg(p2(x))

. . . (−− · · ·−)︸ ︷︷ ︸
deg(p`(x))
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An example

Let q = 100003 and let f ∈ Fq[X] be a polynomial of degree 4.
For example, we might be interested to understand the number
T of t0’s in Fq for which f(X) has exactly four preimages.
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An example

Let q = 100003 and let f ∈ Fq[X] be a polynomial of degree 4.
For example, we might be interested to understand the number
T of elements of Fq for which f(X) has exactly four preimages.

Notice that this is the same as the number T of elements
t0 ∈ Fq such that f(X)− t0 has four zeroes.

The first step is to compute G = Gal(f(X)− t | Fq(t)) and
verify that the splitting field of f(X)− t has the correct
field of constants (this is an easy to address technicality, a
generalization of the method works for any field of
constants extension). For the sake of simplicity of notation
(and also because it is the generic case) we assume G = S4.

It is immediate to see that the number T is the same as the
number of t0’s such that
f(X)− t0 = (X − a)(X − b)(X − c)(X − d).

The only element of S4 having 4 fixed points is obviously
the identity, so that |S| = 1, and therefore the number T of
t0’s having 4 preimages is roughly 100003/24 ∼ 4166
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Another example

Let q = 100003 and let f ∈ Fq[X] be a polynomial of degree 4.
For example, we might be interested to understand the number
T of t0’s in Fq for which f(X)− t0 has exactly two zeroes.

The first step is to compute G = Gal(f(X)− t | Fq(t)) and
verify that the splitting field of f(X)− t has the correct
field of constants. We assume G = S4.

It is immediate to see that the number T is the same as the
number of t0’s such that f(X)− t0 = (X − a)(X − b)g(X).

The elements of S4 having exactly 2 fixed points are

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}

so that |S| = 7, and therefore the number T of t0’s having
exactly 2 preimages is roughly 100003/6 ∼ 16667
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An algebraic number theoretical lemma

Lemma

Let L : K be a finite separable extension of function fields, let
M be its Galois closure and G := Gal(M : K) be its Galois
group. Let P be a place of K and Q be the set of places of L
lying above P . Let R be a place of M lying above P . Then we
have the following:

1 There is a natural bijection between Q and the set of orbits
of H := HomK(L,M) under the action of the
decomposition group D(R|P ) = {g ∈ G | g(R) = R}.

2 Let Q ∈ Q and let HQ be the orbit of D(R|P )
corresponding to Q. Then |HQ| = e(Q|P )f(Q|P ) where
e(Q|P ) and f(Q|P ) are ramification index and relative
degree, respectively.

3 The orbit HQ partitions further under the action of the
inertia group I(R|P ) into f(Q|P ) orbits of size e(Q|P ).
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Thank you!
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