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> All the content presented in this session are solely based on
personal study and understanding.

» Certainly, | believe there are many theories and updates that
| overlooked and not deeply familiar with.

> If there are any facts or statements presented later are
wrong, please correct me, so that | can understand better
too.
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Why Coppersmith’s Method 7

>

4
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It is a popular method in cryptanalyzing RSA cryptosystem.

One of the powerful methods to deal with the small integer
solution(s) in both integer and modular polynomials.

It involves lattices, and frequently applied in analyzing multivariate
cryptography and lattice-based cryptography.

The method is elegant, but a bit confusing for beginners who are
not familiar with it.

Coppersmith's Method: Solutions to Modular Polynomials
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Modular Polynomials and Modular Equations

Let
d-1

F(x)= agx? + ag_ixT 4+ aix + ag (1)

be a univariate polynomial over Z[x] with degree d > 1. Suppose we are
interested to find solutions to the modular equation of F (x) =0 (mod N).

> If the factorization of N is known, then solving F (x) =0 (mod N)
is easy.

» Otherwise, it could be difficult.

> Moreover, if F(x) =0 (mod N) has “small” solution, then we are
not sure whether it is necessarily hard, or not?

Erasmus+ PhD Coppersmith's Method: Solutions to Modular Polynomials



Introduction (cont.)

» Hastad in 1988 firstly addressed similar problem of solving
F(x)=0 (mod N) with ag =1 (monic), x < min(N) and N
composed by k distinct primes. Hastad proved that if k > d(d+1)

then xp can be recovered in polynomial time.

> Coppersmith in 1996 devised a method to find such “small” solution
in polynomial time of (log N, d), with the condition such that xg is
the solution to F(xg) =0 (mod N) and

ol < N (2)

Erasmus+ PhD Coppersmith's Method: Solutions to Modular Polynomials 6/45
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The Central Problem
Suppose we know there exists at Ieastlone solution xg to
F (x) =0 (mod N) and that |xo| < Na. How could we find them?

We know that |xg| < N for all 0 < i < d. If the coefficients a; is small
enough, one might have F (xp) = 0 over Z, then numerical methods
(such as Newton's method) can be used to find an approximation
of xo and checks whether F (xp) =0 (mod N).

Erasmus+ PhD Coppersmith's Method: Solutions to Modular Polynomials 7/45
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What if those coefficients a; are NOT small?

Coppersmith’s |dea

Build a polynomial G (x) from F (x) that still has the same solution xg,
but with smaller coefficients a;.

In other words, build from F (xp) =0 over Zy to G (xp) = 0 over Z.

Erasmus+ PhD Coppersmith's Method: Solutions to Modular Polynomials
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Let F (x) = x?+33x +215. Find xp such that F(xp) =0 (mod 323). I

Set

G (x) 9F (x) =323 (x +6)
9x? - 26x -3

(9x+1)(x-3)

Then, xg = 3 is the solution to G (x) =0, which is also the solution to
F(x) =0 (mod 323).

Erasmus+ PhD Coppersmith's Method: Solutions to Modular Polynomials



ﬁ@ﬂ]@ﬂﬂ Table of Contents

€@ Important Theorems & Backgrounds



ﬁy Important Theorems

(Howgrave-Graham) [4]. Let F (x) = Y%, aix" € Z[x]. Suppose x; € Z
is a solution to F (x) =0 (mod N) such that |xp| < X for N,X e N. The
following defines the row vector associated with the polynomial F (x),

bF = (ao, 31X, ey ad_le_l, adXd) .

If || be ||< , then F (xp) =0.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Definition 1

Let G;j(x) = Nx' for 0 < i < d be d + 1 polynomials that has the root
xo (mod N). Then we define a basis B corresponds to these polynomials
G; (x) together with F (x) for a lattice L as follows:

N o0 ... 0 0
0 NX ... 0 0
B=]: : :
0 0 ... NXP 0
a aX ... ad_le‘l x4

Coppersmith’'s Method: Solutions to Modular Polynomials
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Suppose given a basis B as defined in Definition 1, and G (x) be the
polynomial corresponding to the first vector in the LLL-reduced basis for
L. If

N 7@
< ———»
V2(d+1)7

then any root xg of F (x) (mod N) such that |xp| < X satisfies G (xp) =0
in Z.

X

.

Small solutions xg may be found even when xy does not satisfy the
condition of the theorem above.

A

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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ﬁ@% Coppersmith’s Method

The Full Coppersmith’s Method

Based on Theorem 2, the success of of finding small roots of modular
polynomials is essentially

Jail 3

There are two strategies to allow larger value for X in (3):

1. Increase the dimension n by adding rows to L that contributes less
than N to the determinant, i.e., “x-shift" the polynomials
xF (x),x*F (x) , ..., x*F (x).

2. Increase the power of N on the right hand side using power of
F (x). Since if F (xp) =0 (mod N), then F (x0)* =0 (mod N¥).

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 13/45
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At first it is not so obvious why the 2"? strategy is valid. In fact, since
F(x0) =0 (mod N), then one can express F (x) as

F(x) = (x=x0) p(x) + Ng (x)
for p(x),q(x) € Z[x]. Then,

[(x=0) p (x) + Ng (x)]"
(= 50)" P () + () 0= 20 97 () N )+

F (x)"

| +(kli1)(X‘XO>P<X>/Vk‘lq"-1 (x) + N¥q* (x)

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 14/45
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Since xp is the root to F (xp) =0 (mod N), we have

F(xo) = (xO—xO)kpk(x>+(f)(xO—xO)k‘lpk-l(x)/vq(x)+
(5 ) om0 P00 WG (o g )
= N (%)
= 0 (mod N¥)
Hence, if F(xp) =0 (mod N), then F (x)* =0 (mod N*). O

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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(Coppersmith) [1]. Let 0 < e < min {0.18, %} Let F (x) be a monic
polynomial of degree d with at least one small root xo (mod N) such
that

1 ..
|X()| < EMd .

Then xg can be found in polynomial time in (d, %, Iog(N)).

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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*Note: the M in this proof is the modular N in these entire
presentation.

Proof: Let i > 1 be an integer that depends on d and e and will be determined in
equation (19.3) below. Consider the lattice L corresponding (via the construction of the
previous section) to the polynomials G ;(x) = M 1=IF(a) 2! for 0< i< d, 0 < j < h.
Note that G j(x0) = 0 (mod M"~1). The dimension of L is dh. One can represent L by a
lower triangular basis matrix with diagonal entries M"~1=7 X7+ Hence the determinant
of L is

det(L) = M(r=Dhd/2y (dh-1)dh/2
Running LLL on this basis outputs an LLL-reduced basis with first vector b, satisfying
(1B, ]| < 26R=1)/% get(L)V/dh = 9(dh=1/4 pg(h=1)/2 (dh=1)/2,
This vector corresponds to a polynomial G/(x) of degree dhi — 1 such that G(zg) =

0 (mod MP=1y. If ||b)|| < M"=1/\/dh then Howgrave-Graham’s result applies and we
have G(x9) = 0 over Z.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Hence, it is sufficient that

/rlh2((”171)/4‘;‘1(h—l)/ZX(dh—l)/Q < ﬂ[h—l.

Rearranging gives

Vahaldh=1/4 x(dh=1)/2 _ §p(h=1)/2
which is equivalent to

o(d, )X < MP-D/(dh-1)

where c(d, h) = (Vdh2(@h—1)/1)2/(dh=1) — \/5(p)1/(dh—1)
Now
fie—1 1 d—1

di—1_d d(dh—1)
Equating (d — 1)/(d(dh — 1)) = € gives
h=((d—1)/(de) +1)/d ~ 1/(de). (19.3)

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Note that dh =1+ (d — 1)/(de) and so c(d, h) = ﬂ(l +(d— 1)/((ﬁf))d‘/(d*1)ﬁ which
converges to v/2 as ¢ — 0. Since X < %f\[lfd*‘ we require 5 < gy Writing © =
de/(d —1) this is equivalent to (1+1/x)* < /2, which holds for 0 < # < 0.18. Therefore,

assume € < (d—1)/d.
Rounding h up to the next integer gives a lattice such that if

|zo| < LML/d—¢

then the LLL algorithm and polynomial root finding leads to xo.

Since the dimension of the lattice is dh &~ 1/¢ and the coefficients of the polynomials
G; ; are bounded by M" it follows that the running time of LLL depends on d,1/¢ and
log(M). 0

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials



N
Y
Y —
/ity Politecnico
» di Torino

ﬁ@ﬂ@ﬂ Coppersmith’'s Method (cont.)

i #

859 44

Let NV =4611686047418417197. Consider the polynomial

F(x) = 1942528644709637042 + 1234567890123456789x
+987654321987654321x2 + x>

Find a root xg (mod N) such that |xp| < 21°.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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From the proof of Theorem 3, x = % and 0 < x <0.18. Thus we have
d d-1 1
P _61 < 0.18 which implies g > 018
and that 1 .
h = de +1 > 0.18 +1 ~ 2.2
d B 3
Therefore, we choose h =3 in this case. )

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Since G; = N" 19X FJ (x), with 0<i<d=3and 0<j<h=3. Then,

G00=N2 G01 = NF(X) G02=F2 (X)
GlO = N2X Gll = NXF (X) Glg = XF2 (X)
G20=N2X2 Ggl = NX2F(X) G22:X2F2 (X)

Arranging all the above Gj; accordingly, it forms the basis lattice B of
dimension of 9 as follows:

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 22/45
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We denote ag = 1942528644709637042, a; = 1234567890123456789, a, =
087654321987654321 here, and take X = 215.

M2 0 0 0 0 0 0 0 0
0 M2X 0 0 0 0 0 0 0
0 0 M2x2 0 0 0 0 0 0

May  MXay Mx2a, Mx3 0 0 0 0 0

g_| © MXag Mx2a, Mx3a, Mx4 0 0 0 0

0 0 Mx2a, Mx3ay Mx4a, Mx® 0 0 0
@ mmX  (2gap+a3) X2 2(ggrayay)X® (20 4a3)x4 20y X5 x6 0 0
0 /I%X 2aga; X2 (2"0”2 +n%)x3 2(ag +nlnz)x‘1 (2{11 +a%)X“ 2a, X0 5] 0
0 0 3 x2 2090, X3 (2002 +a3)Xt  2(ag+ayar)X® (20 +a3)X6  20x7 X8

Executing the LLL-algorithm, Maple outputs the solution xg = 16384 to
the F(x) =0 (mod N) above.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Notice that if we eliminate the last two rows and columns from the
previous solution (that is we excluded the last two constructed G (x))

such that
M2 0 0 0 0 0 0
0 M2X 0 0 0 0 0
0 0 M2x2 0 0 0 0
May — MXay MX2a, Mx3 0 0 0
g_| © MXag Mx2a; Mx3a, Mx4 0 0
0 0 Mx2ag Mx3a; Mx*a, Mx3 0
@ wgmX  (way+a)X2 2agragay)Xd (20 +ad)x4 20y X3 x6

Maple also outputs the same solution xp = 16384 to the
F(x)=0 (mod N) above, but with smaller dimension of 7.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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@@EE@ Some Interesting Self-Discovery

» Sometimes X < |xg| (just not too small) is possible and still works in
finding the root xg.

> The solution will occur at the first row post-LLL-reduced matrix —
in fact with suitably chosen X, the solution does appear in every
row (most of the time) of the LLL-reduced matrix.

> It is helpful to consider the polynomial up to F(x)2, which
sometimes helps in reducing the dimension of the basis formed.
Sometimes even the original F (x) suffices to form the basis.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Some Related Applications

> The small exponent attacks on RSA variants.

1. Small public exponent e.

2. Small private exponent d.

3. Partial secret key exposure — with certain bits of d,p,q or N,
it is possible to recover all completely.

» Factoring N = pg with partial knowledge of p.
» Factoring moduli in the form of pqg.
» Lattice-based cryptography and Learning with Errors (LWE).

» Solving the Hidden Number Problem (HNP) in finite fields and its
applications to bit security of Diffie-Hellman key exchange.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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ﬁ@gﬁm@ So far...

» The Coppersmith’s method discussed previously is of univariate
(single variable x) case.

» The method is very straight forward and can be easily implemented
to search for the small solution to modular equations.

» What about the case of finding roots of multivariate
(integer/modular) polynomials?

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 27/45
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The Problem of Modular Bivariate Polynomial
Suppose given F (x,y) € Z[x,y], find at least one root (xg, ¥y) to

F(x,y)=0 (mod N)

such that |xp| < X and |yp| < Y.

Of course, one can apply the same strategy of Coppersmith, hoping
to find two polynomials Fy (x,y), F2(x,y) € Z[x,y] such that

F1 (x0,¥0) = F2 (x0,¥0) = 0

over Z, and that both F; (x,y), F» (x,y) are algebraically indepen-
dent (its resultant is not zero).

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 28/45
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Theorem 4

Let F (x,y) € Z[x,y] be a polynomial of total degree d, and X, Y, N e¢N
such that XY < N@~¢. Then one can find polynomials F; (x,¥),Fa(x,y) €
Z[x,y] such that for all (xo, yo) € Z? with |xo| < X, |yo| < Y and F (xo,y0) =
0 (mod N), one has

F1 (X0, ¥0) = F2 (x0,%0) =0

over Z. )

As the above theorem considers the case of modular form, readers
may consider the proof given by Jutla [6] and Nguyen & Stern [7]
for details.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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> | considered the work done by Jochemz-May, as their heuristic
strategy generally covers in finding both the modular and integer
roots of multivariate polynomials by modifying the strategy
accordingly.

> There are many strategies that had been proposed. For instance by
Boneh & Durfee and Blomer & May.

> | personally found that Jochemz-May's strategy for finding roots of
modular multivariate polynomials is easier to understand (from the
beginner point of view).

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 30/45
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Jochemz-May's Basic Strategy [5]

Let € > 0 be anarbitrary small constant. Depending on % fixed an integer
h. For j€{0,...,h+ 1}, define the set M; of monomials

M; = {Xfxz'z...x,’," | xi'x2...x/" is a monomial of F

Wb Uiy
xMx2 . x
nd L2 n

. . h—j
——=—" is a monomial of Fy~
]

where [ is the leading monomial of Fy with coefficient a;. It is assumed

that the monomials of Fy, ..., Fi~! are all contained in the monomials of
Fr.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 31/45
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The Shift Polynomials

The following defines the shift polynomial that has the similar strategy as
in Coppersmoth’s method, i.e., G; = N™1x'FJ (x).

xixl  xin i
Giy. iy (X1, ey Xpn) 5= L 2If "F,JV(xl,...,x,,)NhJ (4)

for j=0,...,h and x/'x?...x}» € M\ M, 1.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Suppose we consider a small example of modular bivariate polynomial
Fn (x,y) =1+xy?+x2y. Let's assume | = x?y be the leading monomial
and let h=2.

Then, FZ (x,y) = 1+ 2xy? +2x y+x y* +2x3y3 + x*y? with 6
monomials of {1,Xy2,x2y,x vy x3y3, x y2} Now, we want to
build a lattice having all the above monomials in its column.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 33/45
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Now, following the shift polynomial described by Jochemz-May:

Gy, (x,y) = <y F (x,y) N
(x2y)

with h=2 and j = {0,1,2}. We can now define the set of M; as follows:

0; Mo ={1,x/7 Xy,xy x3y3, x4y?)
1; M1={X2y,><y ,x3y3 Xy}
2; M2:{X4y}

— . -
I

Notice that the set M; contains the monomials in F3 (x,y) that is
divisible by (x2y)’ for j=0,1,2.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 34/45
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To construct the polynomials G, (x,y), we sort out the sets such that
x1y? e M\Mj,1:

Mo\M; = {1,xy?}
M \M = {x?y,x?y* x3y3}
Mo\Ms = {x*y?}

Taking the first sorted set Mp\M; = {l,xyz}, we can now construct the
following shift polynomials for each element (monomial) in the set:

Go () = ,f ) FYOay) N0 = N2

G12(X7Y):%FR/(X7Y)N270 = XY2N2
(x%y)

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 35/45
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For the next sorted set Mi\M> = {x2y, x?y*, x®y®}, we repeat the similar

process:
Gor (x,) = (j) Fu (o) VY = Fy(xy) N
G (x,y) = y FN(XY)N21 = yFy(x,y)N
(X y)
G (xy) = 22 YL Gy) NP = PP (xy) N
(x2y)*

And for the last sorted set Mo\M; = {x*y?}:

G2 (x,y) = (2)FN(XY)N22 = FN(X7Y)2

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 36/45
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> Notice that all the constructed shift polynomials except Gos (x,y)
contain the monomial from the original set.

» Since y3 is not part of the monomials, introducing it in the basis
matrix will produce more new monomials of y* and xy® which are
not in the Fy (x,y).

> This will next enlarge the dimension of the basis formed, which
contradict to the aim of having low-determinant matrix.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Instead of putting monomial x2y* into M;\M,, we remain it in the

first set of Mp\My, and proceed to compute as above:

Xyt 0 2-0 2 4p2

G24(X7Y)=WFN(X7Y)N = xy'N
X<y

Erasmus+ PhD

Coppersmith’'s Method: Solutions to Modular Polynomials
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Next, we can arrange and form the basis lattice B accordingly, as follows:

1 Xy2 X2 y X2 y4 X3 y3 4 yz
Goo N2 0 0 0 0 0
G 0  XY2N? 0 0 0 0

B=|Gs, 0 0 0 X2Y*N? 0 0
Gy N  XY2N X2YN 0 0 0
Gz 0 XY2N 0 X2Y*N  X3Y3N 0
Gy 1  2XY?2 2X2Y 2X%Y* 2X3Y3 X4y?

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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Since the diagonal contains 0, this can be handled easily by swapping G4

and G21Z

1 xy2 x2y X2y4 X3y3 x4y2

Goo N2 0 0 0 0 0

G 0  XY2N? 0 0 0 0

B=|G: N XY2N X2YN 0 0 0

Gy O 0 0 X2Y4N? 0 0

Gz 0 XY3N 0 X2Y*N  X3Y3N 0
Gy 1 2XY? 2X2Y 2X2y* 2x3y3 Xx4y?

By executing the LLL-algorithm, one can proceed to find the resultant
matrix that reveals the root of the Fy (x,y) =0

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials 40/45
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Related Applications

» Cryptanalysis on RSA-CRT with known difference, i.e., the
difference of d, — dg is known to the attacker.

» Cryptanalysis on Common Prime RSA.

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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ﬁ@gﬂm Main Reference

» The main reference used in preparing this sharing session.

—U
 —
[ —— Figure 1: Mathematics of Public
E Key Cryptography by Steven D.

‘ Galbraith - Chapter 19.
E-book is available online for free.

STEVEN D. GALBRAITH

Erasmus+ PhD Coppersmith’'s Method: Solutions to Modular Polynomials
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