
Schnorr and Taproot: an overview of the new Bitcoin update

Andrea Gangemi, Alessandro Guggino
CrypTO, BIT PoliTO
1 December 2021

An Overview of the Update

The Taproot update consists of three different Bitcoin Improvement Proposals
(BIPs):

BIP340 - Schnorr : a new digital signature.

BIP341 - Taproot: more privacy, efficiency, and flexibility of Bitcoin’s
scripting capabilities.

BIP342 - Tapscript: an upgraded scripting language that complements
Schnorr and Taproot.

Taproot has been deployed as a backward-compatible soft fork.

A. Gangemi, A. Guggino, 2/29

Taproot Timeline

A. Gangemi, A. Guggino, 3/29

A digression: how was the upgrade locked in?

The miners are the people which must signal support for any Bitcoin protocol
update: they are saying that they are prepared to run a certain version of the
software which implements the updated code.

The upgrade has been locked in using a process called speedy trial .

A signaling period (or epoch) is a window of 2016 blocks.
To signal support for Taproot, miners put a “4” at the end of the version
bits field in the block that they mined, during the signaling period.
If at least the 90% of the blocks (i.e., 1815 blocks) during the epoch had a
version bits field which ended with "4", then Taproot was successfully
locked in.
If this strategy had failed for six consecutive epochs, Taproot would not
have been added to the protocol.

A. Gangemi, A. Guggino, 4/29

Recap: ECDSA

The original digital signature used by the Bitcoin protocol is ECDSA. However,
it has some limitations:

The best known results for the provable security of ECDSA rely on stronger
assumptions with respect to other digital signature schemes (e.g., Schnorr).
It does not (easily) allow the aggregation of signatures: P2SH and P2WSH
transactions take a lot of space to save every signature separately.

A. Gangemi, A. Guggino, 5/29

BIP340 - Schnorr
Schnorr Signatures for secp256k1

The Schnorr signature is a digital signature algorithm which was
described by Claus Schnorr in 1989.

This signature scheme was patented until February 2008.

The scheme is known for its simplicity, since it is linear, and its security is
based only on the supposed intractability of the Discrete Logarithm
problem.

The Schnorr’s signature can be computed on a Short Weierstrass elliptic curve:
in particular, it can be computed on the Bitcoin curve secp256k1.

A. Gangemi, A. Guggino, 6/29

Schnorr Signatures

KEY GENERATION
Fix an elliptic curve E on a finite field Fq. Let N be the order of the curve.
Fix a generator G and a Hash Function h.
Every user chooses his secret key d , 0 < d < N, and computes his public
key Px as the x-coordinate of the point P = dG .

SIGNING
Let M be the message.
The signer (A) chooses an integer k , 1 < k < N and computes
R = kG = (Rx ,Ry).
A computes c = h(Rx ||(Px)A||M).
A computes s = k + dAc mod N.
The signature is the couple (Rx , s).

A. Gangemi, A. Guggino, 7/29

Schnorr Signatures

VERIFICATION
The recipient (B) computes the point sG .
B computes the hash c = h(Rx ||(Px)A||M).
If sG = R + cPA, the signature is valid.

This works because

sG = (k + dAc)G = kG + c(dAG) = R + cPA.

This signature has a length of 64 bytes (32 bytes for the x-coordinate of R , 32
bytes for the number s). The signature is about 10% shorter than a ECDSA one.

To recover the y coordinate of the point, we implicitly choose the one that is
even.

A. Gangemi, A. Guggino, 8/29

Schnorr Applications

The Schnorr signature allows several interesting applications:

Multisignatures.

Batch verification of signatures.

Adaptor signatures.

Blind signatures.

A. Gangemi, A. Guggino, 9/29

Multisignature Schemes

The Schnorr signature allows the aggregation of public keys into a single public
key which users can jointly sign for. This enables n-of-n multisignatures which,
from a verifier’s perspective, are no different from ordinary signatures.

Multisignature schemes which are compatible with Schnorr are:

MuSig.

Musig2.

MusigDN.

FROST (threshold signature scheme t-of-n, with t < n).

A. Gangemi, A. Guggino, 10/29

MuSig

The MuSig scheme utilizes the same key generation algorithm used by the
Schnorr scheme. Suppose there are n users involved, then:

SIGNING

Let L = h(P1|| . . . ||Pn). Every user computes the quantity ai = h(L||Pi).

Let X̃ =
n∑

i=1
aiPi : X̃ is a public parameter.

Every user chooses ri and computes Ri = riG . Then, he sends to everyone
else the commit ti = h(Ri).

Upon reception of the other n − 1 commitments, every user sends Ri to the
other users.

Upon reception of the other n − 1 R-points, every user checks if effectively
ti = h(Ri) holds for i ∈ {1, . . . , n}.

A. Gangemi, A. Guggino, 11/29

MuSig

Every user computes the point R = R1 + . . .+ Rn = (Rx ,Ry).

Every user computes c = h(X̃x ||Rx ||M).

Every user computes si = ri + cdiai mod N, then the aggregate is
s = s1 + . . .+ sn mod N.

The signature is the couple (Rx , s).

VERIFICATION

Check if sG = R + cX̃ .

The verification step can be performed without knowing every single public key:
we just need the aggregate X̃ .

A. Gangemi, A. Guggino, 12/29

MuSig2

The main limitation of MuSig is the number of communication rounds (three).

MuSig2 is a novel scheme proposed in 2020 which removes the preliminary
commitment phase, so that signers start right away by sending the points
R1, . . . ,Rn.

To date, this protocol is the only one that is considered secure, supports
key aggregation, outputs ordinary Schnorr signatures and needs only two
communication rounds.

The price to pay is a stronger cryptographic assumption.

The key generation and the verification algorithms are unchanged. Suppose
there are n signers.

A. Gangemi, A. Guggino, 13/29

MuSig2

SIGNING

Compute L, ai = h(L||Pi) and finally X̃ as before.

Each user i chooses ν different nonces ri,1, . . . , ri,ν and computes the points
Ri,j = ri,jG , ∀j ∈ {1, . . . , ν}.

All these R points are public. Compute Rj =
n∑

i=1
Ri,j ∀j ∈ {1, . . . , ν}.

Compute the hash b = h(X̃x ||R1x || . . . ||Rνx ||M), then compute

R =
ν∑

j=1
bj−1Rj .

Compute the hash c = h(X̃x ||Rx ||M), then every user computes

si = caidi +
ν∑

j=1
ri,jb

j−1 mod N.

Compute s = s1 + . . .+ sn mod N. The signature is the couple (Rx , s).

For the applications, usually ν = 2 or ν = 4.

A. Gangemi, A. Guggino, 14/29

Our contribution

BIT PoliTO’s cryptography team has implemented all three digital
signatures.

In particular, the Schnorr signature implementation passes all the vector
tests provided in the official BIP-340 page.

The code is open source and can be downloaded from the following GitHub
page.

Everyone can generate signatures using the Jupyter Notebook provided in
the above link! Soon, the same tool will be directly available on the official
BIT PoliTO website.

A. Gangemi, A. Guggino, 15/29

https://github.com/bitcoin/bips/blob/master/bip-0340/test-vectors.csv
https://github.com/BITPoliTO/schnorr-sig
https://github.com/BITPoliTO/schnorr-sig
https://www.bitpolito.it/

Recap: Bitcoin Script

Bitcoin uses Script, a non-Turing-complete programming language that sets
instructions on how to spend bitcoins.
When sending bitcoins, users must define a locking script on each output in
the transaction, while the recipient must then execute an unlocking script to
spend the bitcoins.

Elements:
Data: information needed for the transaction to occur (e.g. digital
signature and public key).
Opcodes: commands that operate on the data, allowing to create complex
spending conditions (or smart contracts).

Example: locking script = 3 OP_ADD 5 OP_EQUAL
–> x + 3 = 5

unlocking script = x = 2

A. Gangemi, A. Guggino, 16/29

Recap: Bitcoin Outputs

Although there are many different locking scripts combining various opcodes,
most outputs relay on standard scripts.

Pay-to-Public-Key Hash (P2PKH):
It contains an address derived from the hash of a public key and it may be
unlocked by a signature and a public key (to verify the address and check
the signature).
Pay-to-Script-Hash (P2SH):
It contains the digest of a script (with different spending conditions than a
key and a signature). To unlock it, the data needed to satisfy the
conditions and the actual script must be provided.

There are also the SegWit versions of these output types: P2WPKH and
P2WSH.

A. Gangemi, A. Guggino, 17/29

BIP 341 - Taproot
SegWit version 1 spending rules

The idea behind Taproot is to combine the traditionally separate
pay-to-public-key and pay-to-script output types into one type of output
called pay-to-taproot.

Coins protected by Taproot may be spent either by satisfying one of the
committed scripts or by simply providing a signature that verifies against the
public key.

Taproot is intended for use with:
Schnorr signatures that simplify multiparty construction (e.g. using
MuSig).
MAST to allow committing to more than one script, any one of which may
be used at spend time.

A. Gangemi, A. Guggino, 18/29

Merkle Tree

Merkle trees are a hash-based data structure where each node contains the hash
of its children hashes, and the leaf nodes contain the hashes of the actual data
being committed to it.

A. Gangemi, A. Guggino, 19/29

MAST
Merklized Alternative Script Tree

MAST is a method of using a Merkle tree to store various user-selected
spending conditions organized into the leaves of a binary tree, that can be a
balanced tree if each condition is equally likely.
Otherwise, a Huffman tree can be constructed.
This allows the spender to select which one of the conditions they will fulfill
without having to reveal the details of other conditions to the blockchain.

Advantages:
Larger contracts.
Lower fees.
Improved privacy.
Improved fungibility.

A. Gangemi, A. Guggino, 20/29

Tweaked Public Key

It is possible to combine the pay-to-public-key and pay-to-script output types by
using a tweaked public key:

Q = P + H(P,m)G

P is a inner public key which can spend the output.
m is a Merkle root of a MAST which contains script conditions under
which the output can be spent.
H(P,m)G is a public key generated from the hash and the generator point
of the Bitcoin curve (secp256k1).

If no single (nor aggregated) public key is permitted to spend an output, then a
provably unknown public key is used.
If no scripts are permitted to spend an output, then the hash is calculated
without m instead of omitting it.

A. Gangemi, A. Guggino, 21/29

Tweaked Public Key
Keypath or Scriptpath

Q = P + H(P,m)G

When spending a Taproot output using the keypath (the pay-to-public-key
condition):

You simply provide a digital signature for the public key Q, since you know
H(P,m) and the private key of P. So you can sign using the sum of these
two private keys.

When spending using the scriptpath (the pay-to-script condition):

You reveal P and m allowing validators to see that Q does indeed commit
to m, and then you provide a Merkle proof that a specific script is
committed to by m.

A. Gangemi, A. Guggino, 22/29

Tweaked Public Key
An example

A. Gangemi, A. Guggino, 23/29

Pay-to-Taproot (P2TR)

Pay-to-Taproot (P2TR) funds are locked to a single public key similarly to
Pay-to-Public-Key (P2PK) outputs.

P2TR (Native SegWit v1) will be the first output type that uses the bech32m
address encoding, an updated version of bech32 which was used for P2WPKH
and P2WSH (Native SegWit v0).

All the outputs look identical on-chain, from the opening of a Lightning Network
channel (with HTLC or PTLC) to a transaction with multi-signature or with a
complex script.
... and this means more privacy!

A. Gangemi, A. Guggino, 24/29

Pay-to-Taproot (P2TR)
Comparisons

A. Gangemi, A. Guggino, 25/29

BIP 342 - Tapscript
Validation of Taproot Scripts

Tapscript is the scripting language used for Taproot outputs.

It shares most operations with legacy and SegWit Bitcoin Script but has a few
differences:

Opcodes OP_CHECKSIG and OP_CHECKSIGVERIFY are modified
to verify Schnorr signatures.

Opcodes OP_CHECKMULTISIG and
OP_CHECKMULTISIGVERIFY are replaced by
OP_CHECKSIGADD.

Many previously disabled opcodes are redefined to be OP_SUCCESS
opcodes. They allow introducing new opcodes more cleanly.

A. Gangemi, A. Guggino, 26/29

References

https://en.bitcoin.it/wiki/BIP340

https://en.bitcoin.it/wiki/BIP341

https://en.bitcoin.it/wiki/BIP342

https://kraken.docsend.com/

https://lists.linuxfoundation.org/pipermail/bitcoin-dev

https://eprint.iacr.org/2018/068.pdf

A. Gangemi, A. Guggino, 27/29

https://en.bitcoin.it/wiki/BIP_0340
https://en.bitcoin.it/wiki/BIP_0341
https://en.bitcoin.it/wiki/BIP_0342
https://kraken.docsend.com/view/9e9y7may8526z934
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2021-March/018583.html
https://eprint.iacr.org/2018/068.pdf

References

https://eprint.iacr.org/2020/1261.pdf

https://github.com/BITPoliTO/schnorr-sig

https://bitcoinops.org/en/topics/taproot/

https://bitcointechtalk.com/

https://suredbits.com/the-taproot-upgrade/

https://murchandamus.medium.com/

A. Gangemi, A. Guggino, 28/29

https://eprint.iacr.org/2020/1261.pdf
https://github.com/BITPoliTO/schnorr-sig
https://bitcoinops.org/en/topics/taproot/
https://bitcointechtalk.com/what-is-a-bitcoin-merklized-abstract-syntax-tree-mast-33fdf2da5e2f
https://suredbits.com/the-taproot-upgrade/
https://murchandamus.medium.com/2-of-3-multisig-inputs-using-pay-to-taproot-d5faf2312ba3

Grazie per l'attenzione

