	Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography O
--	---------------------	-----------------------------	------------------	---------------------	-------------------	-------------------

A new Post-Quantum Signature from Alternating Trilinear Forms

Giuseppe D'Alconzo

Commutative algebra applied to coding theory, cryptography and algebraic combinatorics

April 27, 2022

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography O
Content	s				

1 Introduction

- 2 Alternating Trilinear Forms
- 3 Signature scheme

4 Attacks

5 Conclusions

Giuseppe D'Alconzo

Commutative Algebra and Applications

 Introduction
 Alternating Trilinear Forms
 Signature scheme
 Attacks
 Conclusions
 Bibliography

 •oo
 •ooo
 •oo
 •ooo
 •oo

Post-quantum Digital Signatures

Current situation for the NIST's post quantum call for signatures:

	Signature	Assumption
	CRYSTALS-DILITHIUM	Lattices (MLWE)
Ŀ	FALCON	Lattices (NTRU)
	Rainbow*	Multivariate
	SPHINCS+	Hash functions
Alt.	GeMSS	Multivariate
	Picnic	MPC/NIZK/Symmetric prim.

*Broken for lower levels of security.

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography O

The need for other assumptions

Rainbow is "broken".

Breaking Rainbow Takes a Weekend on a Laptop Ward Beullens Concretely, given a Rainbow public key for the SL 1 parameters of the second-round submission, our attack returns the corresponding secret key after on average 53 hours (one weekend) of computation time on a standard laptop.

- The other two finalists are both lattices-based: different assumptions are needed.
- There are new (not-so-practical) signatures on linear codes.
- Isogenies: CSI-FiSh and SeaSign are close to be practical.

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction 00●	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography O
New Ass	sumptions				

New hardness assumptions can be carried by Hard Homogeneous Space. An example is given by isogeny-based cryptography, such as CSIDH.

- The POLYNOMIAL ISOMORPHISM problem can be seen in this setting.
- We introduce another problem: Alternating Trilinear Form Equivalence (ATFE).

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000	•00000000		00000000	00	O
A 1.	·				

Alternating Trilinear Forms

Alternating Trilinear Form

A map $\phi : (\mathbb{F})^n \times (\mathbb{F})^n \times (\mathbb{F})^n \to \mathbb{F}$ is *trilinear* if it is linear in each of its 3 arguments. It is *alternating* if it evaluates to 0 whenever two inputs are equal. The set of alternating trilinear forms over $(\mathbb{F}_q)^n$ is denoted with $\mathsf{ATF}(n, q)$

We can define the action of GL(n, q) over ATF(n, q) in the following way:

$$A \star \phi = \phi \circ A$$

and we have $(\phi \circ A)(x, y, z) = \phi(A^t(x), A^t(y), A^t(z)).$

Given ϕ, ψ in ATF(n, q), we write $\phi \sim \psi$ if there exists A in GL(n, q) such that $\phi = \psi \circ A$.

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography				
000	0●0000000		00000000	00	O				
Main P	Main Problem and Variants								

The decision problem ALTERNATING TRILINEAR FORM EQUIVALENCE (ATFE) is the following:

- **Input**: two alternating trilinear forms ϕ and ψ .
- **Output**: "Yes" if $\phi \sim \psi$ and "No" otherwise.

The promised search problem psATFE is the following:

- **Input**: two alternating trilinear forms ϕ and ψ such that $\phi \sim \psi$.
- **Output**: some A such that $\phi = \psi \circ A$.

Giuseppe D'Alconzo

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000	00●000000		00000000	00	O
Multiple	psATFE				

The signature scheme is based on a generalization of psATFE:

The promised search version of ATFE for m instances is denoted with m-psATFE and is the following problem:

- **Input**: *m* alternating trilinear forms ϕ_1, \ldots, ϕ_m such that $\phi_i \sim \phi_j$ for every (i, j).
- **Output**: some A and a pair (i, j), with $i \neq j$, such that $\phi_i = \phi_j \circ A$.

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000	000●00000		00000000	00	O
Why AT	FE?				

To answer this question, we need to introduce the following problem.

The decision problem d-TENSOR ISOMORPHISM over the field \mathbb{F} is the following:

- Input: two *d*-tensors in \mathbb{F} , of sides length n_1, \ldots, n_d , $A = (a_{i_1,\ldots,i_d})$ and $B = (b_{i_1,\ldots,i_d})$.
- **Output**: "Yes" if there exist $P_1 \in GL(n_1, \mathbb{F}), \ldots, P_d \in GL(n_d, \mathbb{F})$ such that for all i_1, \ldots, i_d

$$a_{i_1,\ldots,i_d} = \sum_{j_1,\ldots,j_d} b_{j_1,\ldots,j_d} (P_1)_{i_1j_1} \cdots (P_d)_{i_dj_d}$$

and "No" otherwise.

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography O
The clas	s TI				

In [Grochow and Qiao, 2021], the following definitions are given.

For any field \mathbb{F} , the class $TI_{\mathbb{F}}$ contains problems that are polynomial-time reducible to *d*-TENSOR ISOMORPHISM over \mathbb{F} for some *d*.

A problem is said $TI_{\mathbb{F}}$ -complete if it is in $TI_{\mathbb{F}}$ and d - TENSORISOMORPHISM for any d reduces to it.

In the same flavour of SAT and $3-\mathrm{SAT},$ the problem

 $3-{\rm Tensor}$ Isomorphism is ${\rm TI}_{\mathbb F}\text{-complete}.$

Theorem [Grochow et al., 2020]

Alternating Trilinear Form Eq. is $TI_{\mathbb{F}}$ -complete.

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography O
Why TI	?				

The class TI is of large interest for many reasons:

- **1** TI-complete problems are *hard-on-average*:
 - the worst case is hard as the average case \implies useful for cryptography;
 - they cannot be NP-hard unless the polynomial hierarchy collapses;
 - they are at least as hard as GRAPH ISOMORPHISM and CODE EQUIVALENCE.
- 2 Many problems from different areas:
 - *d* − TENSOR ISOMORPHISM from quantum information;
 - TENSOR CONGRUENCE from machine learning;
 - POLYNOMIAL ISOMORPHISM from cryptography;
 - GROUP ISOMORPHISM for certain groups from computational algebra;
 - many other like ALGEBRA ISOMORPHISM.

Giuseppe D'Alconzo

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography O
Structur	e of TI				

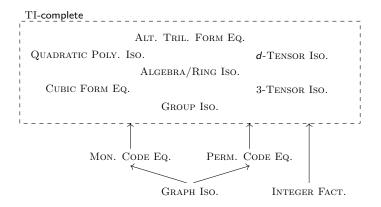


Figure: Structure of TI (see [Grochow and Qiao, 2021, Grochow et al., 2020]).

Effort from different areas \implies well-studied problems.

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction
ocoAlternating Trilinear Forms
ocococoSignature scheme
ocococoAttacks
ococococoConclusions
ocBibliography
oAssumptions on Group Actions

Wa generalize the Decisional Diffic Hollman Assumption

We generalize the Decisional Diffie-Hellman Assumption for group actions.

Pseudorandom Action

Let (G, S, \star) be the action of G over S through $\star : (G, S) \to S$. Define the following distributions over $S \times S$:

- **1** the *random* distribution is the uniform one over $S \times S$;
- 2 the *pseudorandom* distribution picks uniformly $x \in S$ and $g \in G$ and returns $(x, g \star x)$.

The action is *pseudorandom* if the two distributions above cannot be distinguished efficiently.

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000	00000000●		00000000	00	O
Hardness	s Assumption				

It is assumed that (post-quantum) pseudorandom group actions exist:

- 1 the class group action from CSIDH or
- 2 the group action on 3-tensor used in [Ji et al., 2019] to design a digital signature.

Pseudorandom Assumption

The group action of GL(n, q) over ATF(n, q) underlying ATFE is pseudorandom.

Giuseppe D'Alconzo

Commutative Algebra and Applications

Alternating Trilinear Forms Signature scheme Attacks Bibliography 000000

Representations of ATF

Let e_i^* be the canonical linear form. We can construct an alternating trilinear form $e_i^* \wedge e_i^* \wedge e_k^*$, where, given $(x, y, z) \in (\mathbb{F}_q)^n \times (\mathbb{F}_q)^n \times (\mathbb{F}_q)^n$, we have

$$\left(e_{i}^{*} \wedge e_{j}^{*} \wedge e_{k}^{*}
ight)(x, y, z) = \det egin{pmatrix} x_{i} & y_{i} & z_{i} \ x_{j} & y_{j} & z_{j} \ x_{k} & y_{k} & z_{k} \end{pmatrix}$$

An element ϕ in ATF(n, q) can be represented as

$$\phi = \sum_{1 \le i < j < k \le n} c_{i,j,k} e_i^* \wedge e_j^* \wedge e_k^*.$$

We need $\binom{n}{3}$ elements of \mathbb{F}_{q} .

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography O
How GL	(n,q) acts				

Let $A = (a_{i,j})$ in GL(n,q). We have

$$\left(e_i^* \wedge e_j^* \wedge e_k^*\right) \circ A = \sum_{1 \leq r < s < t \leq n} d_{r,s,t} e_r^* \wedge e_s^* \wedge e_t^*,$$

where

$$d_{r,s,t} = \det \begin{pmatrix} a_{i,r} & a_{i,s} & a_{i,t} \\ a_{j,r} & a_{j,s} & a_{j,t} \\ a_{k,r} & a_{k,s} & a_{k,t} \end{pmatrix}.$$

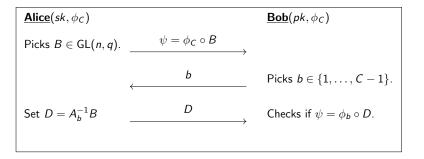
We extend this action linearly over ATF(n, q).

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000		00●0000	00000000	00	O
The S-	protocol				

The signature scheme in [Tang et al., 2022] is built applying the Fiat-Shamir transform to a Σ -protocol based on C-psATFE. Let $\phi_{\mathcal{C}} \in \mathsf{ATF}(n, q)$ and $\phi_i = \phi_{\mathcal{C}} \circ A_i$ for randomly chosen $A_i \in GL(n, q)$, for every $i = 1, \ldots, C - 1$. Set $sk = \{A_i\}_{i=1,...,C-1}$ and $pk = \{\phi_i\}_{i=1,...,C-1}$.



Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000		000●000	00000000	00	O
Key Ger	neration Algorith	ım			

Algorithm 1: Key generation.

- **Input:** The variable number $n \in \mathbb{N}$, a prime power q, the alternating trilinear form number $C = 2^c$.
- **Output:** Public key: C alternating trilinear forms $\phi_i \in ATF(n, q)$ such that $\phi_i \sim \phi_j$ for any $i, j \in [C]$.
- Private key: C matrices A_1, \ldots, A_C , such that $\phi_i \circ A_i = \phi_C$.
- 1 Randomly sample an alternating trilinear form $\phi_C : \mathbb{F}_q^n \times \mathbb{F}_q^n \times \mathbb{F}_q^n \to \mathbb{F}_q$.
- **2** Randomly sample C 1 invertible matrices, $A_1, \ldots, A_{C-1} \in \operatorname{GL}(n, q)$.

3 For every
$$i \in [C-1]$$
, $\phi_i \leftarrow \phi_C \circ A_i$.

- 4 For every $i \in [C-1], A_i \leftarrow A_i^{-1}$.
- 5 $A_C \leftarrow I_n$.
- 6 return Public key: $\phi_1, \phi_2, \ldots, \phi_C$. Private Key: A_1, \ldots, A_C .

Giuseppe D'Alconzo

Commutative Algebra and Applications

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000		0000●00	00000000	00	O
Signing	Algorithm				

Algorithm 2: Signing procedure.

Input: The public key $\phi_1, \ldots, \phi_C \in ATF(n, q)$. The private key $A_1, \ldots, A_C \in \operatorname{GL}(n,q)$. $r \in \mathbb{N}, C = 2^c$. The message M. A hash function $H: \{0,1\}^* \to \{0,1\}^{\ell}$, with the promise that $|\ell/c| > r$. **Output:** The signature S on M. 1 for $i \in [r]$ do Randomly sample $B_i \in \operatorname{GL}(n, q)$. 2 $\psi_i \leftarrow \phi_C \circ B_i$. 3 4 end **5** Compute $L = H(M|\psi_1| \dots |\psi_r) \in \{0, 1\}^{\ell}$. /* For the next step we need $|\ell/c| \ge r$. */ 6 Slice L into $|\ell/c|$ bit strings in $\{0,1\}^c$, and set $b_1,\ldots,b_r \in [C]$ to be the integer represented by the first r bit strings. 7 for $i \in [r]$ do $D_i \leftarrow A_{b_i} B_{i_i}$; // Note that $\phi_{b_i} \circ D_i = \psi_i$. 8 9 end 10 return $S = (b_1, \ldots, b_r, D_1, \ldots, D_r).$

Giuseppe D'Alconzo

Commutative Algebra and Applications

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000		00000●0	00000000	00	O
Verify A	Algorithm				

Algorithm 3: Verification procedure.

Input: The public key $\phi_1, \ldots, \phi_C \in ATF(n, q)$. The signature $S = (b_1, \ldots, b_r, D_1, \ldots, D_r), b_i \in [C], D_i \in GL(n, q).$ The message M. The A hash function $H: \{0,1\}^* \to \{0,1\}^{\ell}$, with the promise that $|\ell/c| > r.$ Output: "Yes" if S is a valid signature for M. "No" otherwise. 1 for $i \in [r]$ do Compute $\psi_i = \phi_{b_i} \circ D_i$. $\mathbf{2}$ 3 end 4 Compute $L' = H(M|\psi_1| \dots |\psi_r) \in \{0, 1\}^{\ell}$. /* For the next step we need $|\ell/c| > r$. */ 5 Slice L' into $|\ell/c|$ bit strings in $\{0,1\}^c$, and set $b'_1,\ldots,b'_r \in [C]$ to be the integer represented by the first r bit strings. 6 if for every $i \in [r], b_i = b'_i$ then return Yes 7 8 else return No 9

Giuseppe D'Alconzo

Commutative Algebra and Applications

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction	Alternating Trilinear Forms	Signature scheme	Attacks	Conclusions	Bibliography
000		000000●	00000000	00	O
Security	of the Digital S	Signature So	cheme		

Theorem [Tang et al., 2022]

The previous signature scheme based on ATFE is EUF-CMA secure in the Random Oracle Model (ROM) under the hardness of the C-psATFE problem.

Equivalently, the scheme is EUF-CMA in the ROM secure under the assumption that the group action underlying ATFE is pseudorandom.

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks ●0000000	Conclusions 00	Bibliography O
Attacks					

The cryptanalysis of the signature consist of solving the psATFE problem.

- **Brute force**: $|GL(n,q)| = O(q^{n^2})$.
- Average-time: in [Grochow et al., 2020] is presented an algorithm for psATFE running in $\sim q^{4n}$ that solves the fraction $1 \frac{1}{q^{\Omega(n)}}$ of all instances.
- **Gröbner bases**: solving a polynomial system to find A in GL(n, q).

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 0●000000	Conclusions 00	Bibliography O
Setting	up the system				

Given two alternating trilinear forms ϕ and ψ , we want to find A such that $\psi = \phi \circ A$.

We want to solve the system

$$(*) = \begin{cases} XY = I_n \\ \phi(X^t(u), X^t(v), w) = \psi(u, v, Y^t(w)) \end{cases}$$

where X and Y are $n \times n$ matrices representing A, while the second equation formulates $\phi(X^t(u), X^t(v), X^t(w)) = \psi(u, v, w)$ avoiding cubic terms.

We have a system of $\binom{n}{3} + n^2$ quadratic equations in $2n^2$ variables.

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00●00000	Conclusions 00	Bibliography O
A First E	Estimation				

Under some assumptions (used for equivalent problems), we can estimate the degree of regularity of the ideal generated by (*).

- we assume that polynomials in (*) forms a semi-regular sequence (defined in [Bardet et al., 2005]);
- given m = Nα(n) quadratic polynomials in N variables, we assume that the estimation of the degree of regularity from [Bardet et al., 2005] applies even if α is not constant.

We obtain that the degree of regularity is asymptotically 3*n*. Then, since in our case $N = 2n^2$, the F5 algorithm has complexity

 $O(2^{6\omega n \log_2(n)})$

where ω is the matrix multiplication exponent.

Giuseppe D'Alconzo

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 000●0000	Conclusions 00	Bibliography O
Using P	artial Informatic	n			

If we assume that the first column of A is known, we can achieve a significant speed-up.

- The knowledge of the first column of X implies constrains on Y and reduces the number of variables to $2(n^2 n)$.
- Experiments in this setting show that maxGBdeg of the ideal generated by (*) is 3 for each *n* up to 13.

The polynomial system with partial information can be solved in time

 $O(n^{2\omega}\log_2(q)).$

How to find such partial information?

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 0000●000	Conclusions 00	Bibliography O
	- · ·				

Heuristic Complexity

- Let $\phi, \psi \in \mathsf{ATF}(n, q)$ such that $\psi = \phi \circ A$.
 - For any $\varphi \in \mathsf{ATF}(n,q)$ and $u \in (\mathbb{F}_q)^n$, we define the bilinear form

$$\varphi_u(y,z)=\varphi(u,y,z).$$

- For a fixed r, the size of the set $R_{\varphi,r} = \{u \mid \mathrm{rk}(\varphi_u) = r\}$ is an isomorphism invariant.
- The birthday attack can be used to find partial information in the space $R_{\phi,r} \times R_{\psi,r}$, having size $O(q^{4n/3})$.
- After $O(q^{2n/3})$ samples, we find, with constant probability u and v in $(\mathbb{F}_q)^n$ such that Au = v.

We have an heuristic algorithm that solves psATFE in

$$O(q^{2n/3}n^{2\omega}\log_2(q)).$$

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000●00	Conclusions 00	Bibliography O
Recap of	n attacks				

1 Upper bound for the F5 algorithm:

 $O(2^{6\omega n \log_2(n)}).$

2 Average-time:

 $O(q^{4n}).$

3 Partial information and birthday attack:

 $O(q^{2n/3}n^{2\omega}\log_2(q)).$

4 Reduction to minRank Problem: slower than partial information for practical instances.

Giuseppe D'Alconzo

Commutative Algebra and Applications

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 000000●0	Conclusions 00	Bibliography O
Post-qu	antum considera	ations			

- The Shor's quantum algorithm can solve the HIDDEN SUBGROUP PROBLEM (HSP) in polynomial time for certain instances.
- A reduction from psATFE to HSP is known, but the instance obtained is non-abelian.
- There are no practical algorithm for non-abelian HSP, even in the quantum setting.
- This is the same argument used for lattice-based cryptosystems.

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 0000000●	Conclusions 00	Bibliography O
Security	in the QROM				

The security of the signature in [Tang et al., 2022] is shown in the ROM. What can we say about the Quantum ROM (QROM)?

- The security of the Fiat-Shamir transform in the QROM is non trivial and it is only assumed.
- Different properties for the Σ-protocol are required. For example the *collapsing property* [Liu and Zhandry, 2019].
- It can be achieved asking that the following problem is hard: given $\phi, \psi \in ATF(n, q)$, to find $A, B \in GL(n, q)$ such that

$$\phi = \psi \circ A = \psi \circ B.$$

This is linked to find automorphisms of a given alternating trilinear form (ATFA).

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions ●○	Bibliography O
Darama	Sizes and Time				

	<u><u> </u></u>		
Params,	SIZOC	and	Limoc
i aranıs.	JIZES	anu	
/			

	Parameters				Size in Byte			Time in μs			
	n	q	r	c	λ	Public key	Private key	Signature	Set-Up	Sign	Verify
Option 1	9	524287	26	5	128	6384	6156	5018	285.9	471.7	416.5
Option 2	10	131071	26	5	128	8160	6800	5542	383.1	660.0	578.9
Option 3	10	131071	32	4	128	4080	3400	6816	190.7	795.4	708.8
Option 4	11	65521	26	5	128	10560	7744	6309	514.0	861.1	765.2

Figure: Proposed parameters, sizes and timings for 128 bits of security

- NIST's finalists run in the range $100\mu s 1000\mu s$.
- The public key and signature sizes of Dilithium are 1312 and 2420 B, while for Falcon-512 we have 897 and 666 B.
- Isogeny-based schemes have smaller sizes (204 and 64 B) but slower algorithms: 2500ms for signing and 50ms for verifying.

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions ○●	Bibliography O
Conclus	ions				

- We have seen a new signature scheme, using new assumptions (ATFE).
- The class TI is itself interesting, both in Complexity Theory and in Cryptography.
- The signature scheme has practical times and close to practical sizes. It can be a potential alternative candidate for the NIST's call.

Thank you for your attention!

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography ●
Reference	ces I				

- Bardet, M., Faugere, J.-C., Salvy, B., and Yang, B.-Y. (2005). Asymptotic behaviour of the degree of regularity of semi-regular polynomial systems. In *Proc. of MEGA*, volume 5, pages 2–2.
- Grochow, J. A. and Qiao, Y. (2021). On the complexity of isomorphism problems for tensors, groups, and polynomials i: Tensor isomorphism-completeness. In 12th Innovations in Theoretical Computer Science Conference (ITCS 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

A new Post-Quantum Signature from Alternating Trilinear Forms

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography ●
Reference	ces II				

- Grochow, J. A., Qiao, Y., and Tang, G. (2020). Average-case algorithms for testing isomorphism of polynomials, algebras, and multilinear forms. *arXiv preprint arXiv:2012.01085*.
- Ji, Z., Qiao, Y., Song, F., and Yun, A. (2019).
 General linear group action on tensors: A candidate for post-quantum cryptography.
 In *Theory of Cryptography Conference*, pages 251–281.

In Theory of Cryptography Conference, pages 251–281 Springer.

Liu, Q. and Zhandry, M. (2019).
 Revisiting post-quantum fiat-shamir.
 In Annual International Cryptology Conference, pages 326–355. Springer.

Introduction 000	Alternating Trilinear Forms	Signature scheme	Attacks 00000000	Conclusions 00	Bibliography •
Reference	ces III				

Tang, G., Duong, D. H., Joux, A., Plantard, T., Qiao, Y., and Susilo, W. (2022). Practical post-quantum signature schemes from isomorphism problems of trilinear forms.

Cryptology ePrint Archive.