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Diffie-Hellman Key Exchange

[Picture from Borradaile, G. ”Defend Dissent.” Corvallis: Oregon State University, 2021.]
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Introduction to Cryptography University of Zurich

Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange (DHKE), 1976 [2]
1. Alice and Bob publicly agree on a cyclic finite group G and a

generator g .

2. Alice chooses a ∈ {1, . . . , ord(G)}, computes ga and sends it to Bob.
Her secret key is a.

3. Bob chooses b ∈ {1, . . . , ord(G)}, computes gb and sends it to Alice.
His secret key is b.

4. Alice computes (gb)a = gba.
5. Bob computes (ga)b = gab.

The secret common key is gba = gab.

● Diffie-Hellman Problem (DHP): Let G be a finite cyclic group and let g
be a generator. Given ga and gb, find gab.
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Group actions

Given G an abelian group with identity element e and a set X , a group
action of G on X is a map

⋆∶G ×X Ð→ X
(g , x) ↦ g ⋆ x

s.t. e ⋆ x = x and g ⋆ (h ⋆ x) = (gh) ⋆ x for all g , h ∈ G and x ∈ X .

Example: Let X be a cyclic finite group of order p and G = Z×p . Then

Z×p ×X Ð→ X
(n, x) ↦ xn

is an action of Z×p over X .
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Generalised DHKE

Generalised Diffie-Hellman Key Exchange
1. Alice and Bob publicly agree on an abelian group G , an action ⋆ of G

on a finite set X and an element x ∈ X .
2. Alice chooses a ∈ G , computes a ⋆ x and sends it to Bob. Her secret

key is a.
3. Bob chooses b ∈ G , computes b ⋆ x and sends it to Alice. His secret

key is b.
4. Alice computes a ⋆ (b ⋆ x).
5. Bob computes b ⋆ (a ⋆ x).

The secret common key is (ab) ⋆ x = (ba) ⋆ x .

● Diffie-Hellman Group Action Problem (DHGAP): Let G , X and ⋆ as
above. Given x , y , z ∈ X such that y = g ⋆ x and z = h ⋆ x for some
g , h ∈ G , find (gh) ⋆ x .

Silvia Sconza, joint work with Arno Wildi Knot-based Key Exchange Protocol 6



Introduction to Cryptography University of Zurich

Generalised DHKE

Generalised Diffie-Hellman Key Exchange
1. Alice and Bob publicly agree on an abelian group G , an action ⋆ of G

on a finite set X and an element x ∈ X .
2. Alice chooses a ∈ G , computes a ⋆ x and sends it to Bob. Her secret

key is a.
3. Bob chooses b ∈ G , computes b ⋆ x and sends it to Alice. His secret

key is b.
4. Alice computes a ⋆ (b ⋆ x).
5. Bob computes b ⋆ (a ⋆ x).

The secret common key is (ab) ⋆ x = (ba) ⋆ x .

● Diffie-Hellman Group Action Problem (DHGAP): Let G , X and ⋆ as
above. Given x , y , z ∈ X such that y = g ⋆ x and z = h ⋆ x for some
g , h ∈ G , find (gh) ⋆ x .

Silvia Sconza, joint work with Arno Wildi Knot-based Key Exchange Protocol 6



Introduction to Cryptography University of Zurich

Semigroups and semigroup actions

A semigroup is a set S together with a binary operation ⋅ ∶S × S → S that
satisfies the associative property.

Given S an abelian semigroup and a set X , an S-action on X (or a
semigroup action of S on X ) is a map

⋆∶S ×X Ð→ X
(s, x) ↦ s ⋆ x

s.t. s ⋆ (r ⋆ x) = (s ⋅ r) ⋆ x for all s, r ∈ S and x ∈ X
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Generalised DHKE

Generalised Diffie-Hellman Key Exchange [4]
1. Alice and Bob publicly agree on an abelian semigroup S, an S-action
⋆ on a finite set X and an element x ∈ X .

2. Alice chooses a ∈ S, computes a ⋆ x and sends it to Bob. Her secret
key is a.

3. Bob chooses b ∈ S, computes b ⋆ x and sends it to Alice. His secret
key is b.

4. Alice computes a ⋆ (b ⋆ x).
5. Bob computes b ⋆ (a ⋆ x).

The secret common key is (ab) ⋆ x = (ba) ⋆ x .

● Diffie-Hellman Semigroup Action Problem (DHSAP): Let S, X and ⋆ as
above. Given x , y , z ∈ X such that y = s ⋆ x and z = r ⋆ x for some s, r ∈ S,
find (gh) ⋆ x .
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Definitions

A knot is a smooth embedding S1 → R3, considered up to ambient isotopy.

Unknot U Trefoil knot
Oriented

Figure-Eight
knot

N.B.: We will consider just oriented knots.
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Connected sum

Given two oriented knots K and K ′, we can define the connected sum
K#K ′: cut the two knots and glue the corresponding ends (given by the
orientation).

Example:
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Definitions

Given two oriented knots K and K ′, we can define the connected sum
K#K ′: cut the two knots and glue the corresponding ends (given by the
orientation).

Example:

N.B.: With this operation, the set of oriented knots forms an abelian
semigroup: (oKnots, #,U).
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Definitions

Given two oriented knots K and K ′, we can define the connected sum
K#K ′: cut the two knots and glue the corresponding ends (given by the
orientation).

Example:

● Decomposition Problem: Given a knot K , find its prime decomposition
K = K1#⋯#Kn.
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Definitions

Theorem (Reidemeister):
Two knots are the same if and only if they are related by a finite sequence
of the Reidemeister moves:

R1 R2 R3

● Recognition Problem: Given two knot diagrams K and K ′. Do they
represent the same knot?
↑ This is a hard mathematical problem. ↑
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Introduction to Knot Theory University of Zurich

Definitions

Theorem (Reidemeister):
Two knots are the same if and only if they are related by a finite sequence
of the Reidemeister moves:

R1 R2 R3

● Recognition Problem: Given two knot diagrams K and K ′. Do they
represent the same knot?

↑ This is a hard mathematical problem. ↑

Silvia Sconza, joint work with Arno Wildi Knot-based Key Exchange Protocol 15



Introduction to Knot Theory University of Zurich

Definitions

Theorem (Reidemeister):
Two knots are the same if and only if they are related by a finite sequence
of the Reidemeister moves:

R1 R2 R3

● Recognition Problem: Given two knot diagrams K and K ′. Do they
represent the same knot?
↑ This is a hard mathematical problem. ↑

Silvia Sconza, joint work with Arno Wildi Knot-based Key Exchange Protocol 15
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Invariants

To classify knots, one studies knot invariants, which are functions that do
not change under Reidemeister moves.

Fact: All known computable invariants are not complete.

We will use finite type invariants [3].

Conjecture: The set of all finite type invariants distinguish knots.

Fact: A finite type invariant of type d can be computed in

O(cd),

where c is the number of crossings of the knot.
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Finite type invariants

Fixed a d ∈ N, we can choose between several distinct finite type invariants
of type d .

d 0 1 2 3 4 5 6
# d-Finite type invariants 1 1 2 3 6 10 19

d 7 8 9 10 11 12
# d-Finite type invariants 33 60 104 184 316 548
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Encoding knots

Consider a planar representation of a knot K .

● Choose a starting point and an orientation. Enumerate the edges
starting from 1, following the orientation.
● To each crossing, we associate a list of four edges:

(i) starting from the incoming undergoing edge;
(ii) ordering the edges counterclockwise.

[X[4,1,5,2], X[2,8,3,7], X[6,4,7,3], X[8,5,1,6]]

Silvia Sconza, joint work with Arno Wildi Knot-based Key Exchange Protocol 18
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First idea

Knot-based Key Exchange I
1. Alice and Bob publicly agree on a positive integer n and a knot K

with at most n crossings.

2. Alice chooses a knot A of at most n crossings, computes A#K and
sends it to Bob. Her secret key is A.

3. Bob chooses a knot B of at most n crossings, computes B#K and
sends it to Alice. His secret key is B.

4. Alice computes A#(B#K) = A#B#K .
5. Bob computes B#(A#K) = B#A#K .

The secret common key is A#B#K = B#A#K .

Problem I: In this case, given A#K and K , it is easy to find A.

We need to “complicate” A#K and B#K , in order to make them
unrecognisable.

Silvia Sconza, joint work with Arno Wildi Knot-based Key Exchange Protocol 20
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Second idea

Knot-based Key Exchange II
1. Alice and Bob publicly agree on a positive integer n and a knot K

with at most n crossings.

2. Alice chooses a knot A of at most n crossings, computes A#K ,
applies random Reidemeister moves and sends it to Bob. Her secret
key is A.

3. Bob chooses a knot B of at most n crossings, computes B#K ,
applies random Reidemeister moves and sends it to Alice. His secret
key is B.

4. Alice computes A#(B#K) = A#B#K .
5. Bob computes B#(A#K) = B#A#K .

The secret common key is A#B#K = B#A#K .

Problem II: A#B#K and B#A#K are given in different representations.
We can apply an invariant to obtain the same value.
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Final idea

Knot-based Key Exchange (final version)
1. Alice and Bob publicly agree on a positive integer n and a knot K

with at most n crossings and a finite type invariant V .

2. Alice chooses a knot A of at most n crossings, computes A#K ,
applies random Reidemeister moves and sends it to Bob. Her secret
key is A.

3. Bob chooses a knot B of at most n crossings, computes B#K , applies
random Reidemeister moves and sends it to Alice. His secret key is B.

4. Alice computes V (A#(B#K)) = V (A#B#K).
5. Bob computes V (B#(A#K)) = V (B#A#K).

The secret common key is V (A#B#K) = V (B#A#K).
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Final idea

Remarks:

● Underlying mathematical problem: Given V (K), V (A#K) and
V (B#K), find V (A#B#K).
Related mathematical problem: Given K and A#K , find A (which is
unique).
● Recall that (oKnots, #,U) is an abelian semigroup. Moreover, U is

the only invertible element.
● To apply random Reidemeister moves, we use the program

Randomeister1.

1https://github.com/denizkutluay/Randomeisterrandomeister, D. Kutluay
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Invariant choice

● Underliyng mathematical problem: Given V (K), V (A#K) and
V (B#K), find V (A#B#K).

Some invariants admit a connected-sum formula, i.e.
Φ(K#K ′) = Φ(K) ⋅Φ(K ′),

which could solve the problem.

N.B. Finite type invariants do not have such a formula.
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Best attack

The best attack is a sort of brute force attack.

1. Compute A′#K for all knots A′ with at most n crossings.
N.B. It is not enough to just compare A#K with A′#K for all K ′,
because the Recognition Problem is hard.

2. Compute Φ(A′#K) and compare it to Φ(A#K) for all A′, where Φ is
a fixed good invariant.
N.B. We do not have complete invariants.

3. If you obtain just one correspondence, it is A.
In general, you will obtain more than one correspondence, so you
have to choose another invariant and restart.
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Choice of parameters

Goal: choose n to reach a 128-bit security level ↝ > 2128 operations

Polynomial time knot polynomial Z1 [1, 5] ↝ n6 operations

Alexander Polynomial ∆K ↝ n3 operations

Z1(K1#K2) =∆K2
2Z1(K1) +∆K1

2Z1(K2)

It is enough to consider K1#K2#K3#K4#K5 with Ki prime
knots with 19 crossings, since

#{prime knots with 19 crossings} ≈ 3 ⋅ 108

⇒ n = 95
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Future work

Open questions:

● Find a better invariant.
● How many times do we have to apply Reidemester moves to get an

equivalent knot that looks as random as possible?
● Given a string of quaterns of integers, when it represents an encoded

knot?
● No attempt has yet been made to implement our protocol.
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Thanks for your attention!

(Submitted to Cryptology ePrint Archive)
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