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Modern Cryptography

Modern Cryptography

Modern cryptosystems can belong to:

• Symmetric Cryptography:
the key k is a shared secret among the parties, so that

B
Ek(m)−−−→ A, who evaluates m = Dk(Ek(m)).

Pro: efficient both in hardware and software.
Con: key distribution through a secure channel.

• Public-Key (or Asymmetric) Cryptography (PKC):
each party has a public key pk and a secret key sk ,

then B
EpkA

(m)
−−−−→ A and m = DskA(EpkA(m)).

Pro: no need for a secure channel.
Con: significantly less efficient.
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Public-Key Cryptography

Public-Key Cryptography

All pre-computers cryptosystems were symmetric
(until mid 1970s). When the number of parties started
to grow, the requirement of a secure channel became
unmanageable.

Thus, PKC was introduced and different cryptosystems,
based on various kind of difficult mathematical problems,
were adopted. Among the first protocols there were:

• the Diffie-Hellman key exchange (DH, 1976);

• the Rivest-Shamir-Adleman cryptosystem
(RSA, 1978).
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Public-Key Cryptography Diffie-Hellman Key Exchange

Diffie-Hellman Key Exchange

The protocol uses the multiplicative group of integers
modulo a prime number p, i.e. Z×p = {1, 2, . . . , p − 1}:
• A and B publicly agree to use a modulus p and a

generator g of Z×p (primitive root modulo p);

• A chooses a ∈ Z and sends A = g a(mod p) to B;

• B chooses b ∈ Z and sends B = g b(mod p) to A;

• A evaluates s = Ba(mod p);

• B evaluates s = Ab(mod p).

Now, they share the secret s = g ab(mod p).
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Public-Key Cryptography Diffie-Hellman Key Exchange

The security of DH is assured by the:

Diffie-Hellman Problem (DHP)

Given p, g | 〈g〉 = Z×p , g a(mod p) and g b(mod p), what

is the value of g ab(mod p)?

which is assumed to be hard (Diffie-Hellman assumption)
and the most efficient way to solve it is to solve the:

Discrete Logarithm Problem (DLP)

Given p, g as before and g x(mod p) what is x?

DH is not the only cryptosystem whose security is based
on the DLP (DSA, ECC, ElGamal, . . . ).
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Public-Key Cryptography Rivest-Shamir-Adleman Cryptosystem

Rivest-Shamir-Adleman Cryptosystem

Each user A has to follow these steps once:
• choose two prime numbers p and q;
• evaluate N = p · q and φ(N) = (p − 1)(q − 1);
• choose e | 1 ≤ e ≤ φ(N), gcd(e, φ(N)) = 1;
• evaluate d | e · d ≡ 1(modφ(N));
• skA = (p, q, d), pkA = (N , e).
If B wants to send m ∈ ZN to A, then he sends
c = EpkA(m) = me(modN). Now A can decrypt the
received ciphertext using DskA(c) = cd(modN), since:

DskA(EpkA(m)) = me·d(modN) =

= m1+kφ(N)(modN) = m(modN)
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Public-Key Cryptography Rivest-Shamir-Adleman Cryptosystem

The RSA cryptosystem works thanks to the:

Generalized Euler Theorem

Given N = p · q, if a ≡ 1(modφ(N)) then
∀m ∈ Z, ma ≡ m(modN).

The security of RSA is based on the:

Integer Factorization Problem (IFP)

Given N as before, what are the prime numbers p and q?

In fact, if p and q are known, then φ(N) can be easily
computed and consequently d can be obtained from e.

Other cryptosystems based on the IFP are, for example,
Goldwasser-Micali or Rabin.
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Public-Key Cryptography Classical Algorithms

Classical Algorithms

The strength of the mentioned cryptosystems relies on
the assumption that the seen problems are hard to solve.

With standard computers, the solving algorithms have
exponential time. In particular, the best algorithm for:

• DLP is the index calculus, which has runtime
exponential in p1/3;

• IFP is the general number field sieve, which has
runtime exponential in d1/3 (d number of digits of N).
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Quantum Computers

Quantum Computers

Quantum computing took form in the 1960s-80s.

In 1981, Richard P. Feynman observed the impossibility
to simulate a quantum system on a classical computer
and proposed a basic model for a quantum computer.

This theoretical innovation brought to new algorithms,
like the Shor’s algorithm (1994) which allows to solve
the DLP and the IFP in polynomial runtime.

The first working quantum computer was built in 2000
and had 5 qubits. Today, they are still large, noisy and
unstable, but they reach 50 real qubits (IBM) or over
2000 qubits, but limited to optimization (D-Wave).
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Quantum Computers Qubits

Qubits

Qubit (or quantum bit) is the basic unit of quantum
information: a two-state quantum-mechanical system.

The general quantum state of a qubit can be represented
by a linear combination of its two orthonormal basis
states |0〉 and |1〉 (Dirac notation) called superposition:

|ψ〉 = α|0〉+ β|1〉 where α, β ∈ C, |α|2 + |β|2 = 1 .

The complex values α and β are probability amplitudes
related to the basis, i.e., the probability to have 0 as
outcome is |α|2 and to have 1 is |β|2.
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Quantum Computers Bloch Sphere

Bloch Sphere

A qubit has 3 degrees of freedom, in coordinates:

|ψ〉 = e iγ
(
cos
(
θ
2

)
|0〉 + e iϕ sin

(
θ
2

)
|1〉
)
.

Since the overall phase e iγ has no physically observable
consequences, α can be arbitrarily
chosen to be real (γ = 0):

α = cos
(
θ
2

)
, β = e iϕ sin

(
θ
2

)
.

Thus, the possible states of a qubit
can be visualized on a sphere called
the Bloch sphere.
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Quantum Computers Entanglement

Entanglement

In general, the state of n qubits is described with an
amplitude for each possible outcome (n bits).

The state of multiple qubits can be obtained from the
state of the single qubits (if they are independent) or
not. The second case is called entanglement.

Ex. 1√
2
|00〉+ 1√

2
|01〉 can be obtained as combination

of the single qubit states |0〉 and 1√
2
|0〉+ 1√

2
|1〉.

1√
2
|00〉+ 1√

2
|11〉 are instead two entangled qubits

(a combination of qubits can not be found).
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Quantum Computers Emulators and GUI

Emulators and GUI

There are different ways to get started with quantum
computing: some online tools allow to emulate (Quirk)
or also run your scripts on a real quantum computer
(IBM Q Experience).

This is an example of the commonly adopted GUI:

The measurement (pink gates) projects the qubit on the
z axis (irreversibly) and obtains a bit.
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Quantum Computers Quantum Logic Gates

Quantum Logic Gates

In quantum computing, irreversible transformations
destroy the quantum nature of qubits.
Thus, only reversible operations are admitted.

If |ψ〉 = α|0〉+ β|1〉, then its vector representation is
(
α
β

)
and a gate acting on |ψ〉 can be represented as a
multiplication for the unitary matrix (U∗U = UU∗ = Id):

U = e iφ
(

cos
(
ρ
2

)
− i sin

(
ρ
2

)
z −i sin

(
ρ
2

)
(x − iy)

−i sin
(
ρ
2

)
(x + iy) cos

(
ρ
2

)
+ i sin

(
ρ
2

)
z

)
,

i.e., a rotation of ρ degrees around the axis given by the
vector n̂ = (x , y , z), multiplied by an overall phase e iφ.
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Quantum Computers Quantum Logic Gates

The simplest single-qubit gates are:
• the rotations around the z axis given by:

Z =

(
1 0
0 −1

)
, S =

(
1 0
0 i

)
, T =

(
1 0
0 1+i√

2

)
,

of π, π2 and π
4 degrees respectively;

• the π-rotation around the y axis, Y =

(
0 −i
i 0

)
;

• the π-rotation around the x axis, X =

(
0 1
1 0

)
, that is

the reversible version of a NOT (|0〉 ↔ |1〉);

• the Hadamard gate H = 1√
2

(
1 1
1 −1

)
, a π-rotation

around {x = z , y = 0} which allows to obtain
superpositions (|0〉 7→ 1√

2
(|0〉+ |1〉)).
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Quantum Computers Quantum Logic Gates

A quantum gate with n inputs is a unitary matrix of size
2n (the basis contains all combinations of n qubits).

The most interesting and simple multiple-qubits gates
are controlled single-qubit gates.

Ex. Controlled NOT:
if C (control) is in state 1, then apply
X on T (target). The 2-qubits input is:

α|00〉+ β|01〉+ γ|10〉+ δ|11〉,
and the unitary matrix multiplying the


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

.complex vector (α, β, γ, δ) is C-NOT =

This construction can be generalized to all gates, but can
not be used everywhere because of the network topology.
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Quantum Computers Quantum Logic Gates

In general, standard multiple-bits gates are not reversible:
for some outputs it is impossible to obtain the inputs.

The quantum versions are implemented using more
inputs and some controlled gates.

Ex. Quantum AND:
a standard AND is irreversible, because:

0 = 0 AND 0 = 1 AND 0 = 0 AND 1 .
The quantum AND exploits the Toffoli gate:

where the inputs are the first 2 qubits and the
output is the third (only if initialized at |0〉).

Dutto Simone The Threat of Quantum Computers to Public-Key Cryptography 17 / 29



Quantum Computers Toy Example

Toy Example

Deutsch-Jozsa problem

A black-box function f : Zn
2 → Z2 is either:

• constant (∀x ∈ Zn
2 f (x) = b ∈ Z2);

• balanced (half inputs are mapped to 0 and half to 1).

Which category does f fall into?

A classical deterministic algorithm requires to evaluate
the function f 2n−1 + 1 times in the worst case.

With quantum computing only one evaluation is required.
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Quantum Computers Toy Example

Let’s see the Deutsch-Jozsa algorithm for n = 1:

• the initial state is |01〉 = |0〉|1〉;
• H is applied to both qubits, the obtained state is

1
2(|0〉+ |1〉)(|0〉 − |1〉) ;

• Uf : |a〉|b〉 7→ |a〉|b + f (a)〉 (quantum gate for f ) gives
1
2

(
|0〉
(
|0 + f (0)〉 − |1 + f (0)〉

)
+ |1〉

(
|0 + f (1)〉 − |1 + f (1)〉

))
=

= 1
2

(
|0〉(−1)f (0)

(
|0〉 − |1〉

)
+ |1〉(−1)f (1)

(
|0〉 − |1〉

))
=

= 1
2

(
(−1)f (0)|0〉+ (−1)f (1)|1〉

)(
|0〉 − |1〉

)
;

• H is applied to the first qubit, whose state becomes
1
2

((
(−1)f (0) +(−1)f (1)

)
|0〉+

(
(−1)f (0)−(−1)f (1)

)
|1〉
)
,

so that, if f (0) = f (1) then only |0〉 can be evaluated,
while otherwise |1〉 is the only possible state.
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Quantum Computers Toy Example

For general n, the algorithm is given by:

This algorithm is quite useless, but gives an idea of what
quantum computers are capable of.
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Quantum Computers Problematic Algorithms

Problematic Algorithms

The threat of quantum computing to modern
cryptography is due to:

• the Grover ’s algorithm, which allows brute-force with
given output using only O(

√
N) evaluations of the

function (N size of the domain). This quadratic
speedup bothers also symmetric cryptography,
but it is sufficient to double the size of the keys;

• the Shor ’s algorithm, a period-finding quantum
routine which allows to theoretically break all PKC
based on the IFP or on the DLP.
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Shor’s Algorithm How to break the IFP

Shor’s Algorithm
How to break the IFP

Suppose N = p · q with d decimal digits.

Shor ’s algorithm can factorize N in a runtime polynomial
in d . The procedure consists of two parts:

• a classical algorithm to reduce the IFP to the
Period-Finding Problem for f (x) = ax(modN)
and use the resulting period r to factorize N ;

• a quantum algorithm to solve the PFP.
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Shor’s Algorithm How to break the IFP

The classical part consists in:

1. pick a < N ;

2. compute gcd(a,N) (Euclidean algorithm);

3. if gcd(a,N) 6= 1, then p = gcd(a,N), stop;

4. else, find the period r of a (quantum part);

5. if r is odd (low probability), then return to 1.;

6. else, N |(ar − 1) = (a
r
2 − 1)(a

r
2 + 1), where

N 6 |(a r
2 − 1) (otherwise r = r

2);

7. if N |(a r
2 + 1), then return to 1.;

8. else, p = gcd(a
r
2 − 1,N) and q = gcd(a

r
2 + 1,N), stop.
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Shor’s Algorithm How to break the IFP

The quantum part is depicted in the figure.

The measured output is a multiple of 22d

r and can be
used to find the order r of a.
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Shor’s Algorithm Example

Example

Let’s solve the IFP for N = 15.

• a = 11, gcd(a,N) = 1 so let’s find the period r of a;

• since 15 < 16 = 24 = 2d , the quantum subroutine
requires 3d = 12 qubits (and 196 gates). This
compiled version uses only 5 qubits (and 11 gates):
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Shor’s Algorithm Example

• the measured values, i.e. the multiples of 23

r , are:

where the only acceptable result is (00100)2 = 4.
Thus, the period of a = 11 is r = 8

4 = 2;

• then 15 | (112 − 1) = (11− 1)(11 + 1) = 10 · 12.
Since gcd(10, 15) = 5 and gcd(12, 15) = 3 the
resulting factorization is 15 = 5 · 3.
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Shor’s Algorithm How to break the DLP

Shor’s Algorithm
How to break the DLP

Suppose y = g x(mod p) with 〈g〉 = Z×p .

Shor ’s algorithm can find x in a runtime polynomial in p.
Again the QFT is exploited to solve the PFP for a
particular function: f (x1, x2) = g x1y x2.

The resulting period is a pair (r1, r2) such that
f (x1 + r1, x2 + r2) = f (x1, x2)⇔ g r1y r2 ≡ 1(mod p)⇐
⇒ g r1+xr2 ≡ 1(mod p)⇔ r1 + xr2 ≡ 0(mod p − 1)⇐
⇒ x ≡ − r1

r2
(mod p − 1).
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All is not lost...

All is not lost...

In December 2016 the NIST (National Institute of
Standards and Technologies) opened a call for
quantum-resistant PKC proposals (NISTIR 8105).

This first round counted 69 submissions and in January
2019, after 2 years of cryptanalysis performed by the
scientific community, only 26 proposals were selected for
the second round (NISTIR 8240).

The idea is to obtain by 2025 some quantum-resistant
recognized PKC algorithms.
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Thank you

Thank you for your
attention.

simone.dutto@polito.it

https://crypto.polito.it
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