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ARX operations

n-bits strings: we essentially play in Fn
2 and use the natural

correspondence with Z2n

x = (xn−1, xn−2, . . . , x1, x0)↔ xn−12n−1+xn−22n−2+· · ·+x12+x0

Addition : � is the modular addiction mod 2n

Rotation: ≪r and ≫r respectively indicate a
constant-distance left-rotation or right-rotation of r bits
(r < n) of a n-bit word x (when will be clear from the
context, we will also use the notations ←−x =≪r

−→x = x≫r )

x≪r= (xn−r−1, xn−r−2, . . . , x1, x0, xn−1, . . . xn−r )

x≫r= (xr−1, . . . , x1, x0, xn−1, xn−2, . . . , xr )

XOR: ⊕ is the bitwise addition (exclusive OR)
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Why ARX?

ARX ciphers are block ciphers with very interesting advantages
such as

fast performance on PCs;

compact implementation;

easy algorithms;

no timing attacks: in many other ciphers analyzing the time
taken to execute cryptographic algorithms gives useful
informations to the attacker in order to work backwards to the
input, since the time of execution can differ based on the
input;

functionally completeness (assuming constants included):
every possible logic gate can be realized as a network of gates
using ARX operations and constants.
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Basic disavantages of ARX

On the other hand we have some disavantages

not best trade–off in hardware, although there are some
different attempts of optimizations for various ARX ciphers;

it is still not so clear which is their security against some
cryptanalytic tools such as linear and differential cryptanalysis,

it is also still not so clear which is their security against side
channel attacks, i.e. attacks based on all hardware
informations detected from their implementation (power
attacks, electromagnetic attacks, fault attacks...)
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Two examples of ARX ciphers: SPECK 2n/mn

SPECK is a family of lightweight ARX block ciphers publicly
released by the National Security Agency (NSA) in June 2013

every element of the SPECK family is indicated as SPECK
2n/mn where the size of every block is 2n with
n ∈ {16, 24, 32, 48, 64} and the key size is mn where
m ∈ {2, 3, 4} depending on the desired security

the round function consists of two rotations, adding the right
word to the left word, xoring the key into the left word, then
xoring the left word into the right word.

the number of rounds depends on the parameters selected and
the key schedule uses the same round function as the main
block cipher.
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Two examples of ARX ciphers: SPECK 2n/mn

Three rounds of SPECK
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Two examples of ARX ciphers: SPECK 2n/mn

Round function

When i ≥ 0, (x0, y0) and K = (lm−2, . . . , l0, k0) are respectively the
round number, a 2n bits plaintext and a 2nm bits master key, we
have the i–th round output (xi+1, yi+1) from the input (xi , yi ) and
the i + 1-round key (li+m−1, ki+1) from (li+m−2, ki ) as follows

xi+1 = ((xi ≫α)� yi )⊕ ki yi+1 = (yi ≪β)⊕ xi+1

li+m−1 = ((li ≫α)� ki )⊕ i , ki+1 = (ki ≪β)⊕ li+m−1

where (α, β) = (7, 2) for n = 16 and (α, β) = (8, 3) for the larger
versions. The key schedule uses the same round function to
generate the next round key.
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Two examples of ARX ciphers:Chacha

The Chacha quarter round function
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Two examples of ARX ciphers:Chacha

The Chacha structure
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Two examples of ARX ciphers:Chacha

the input words are placed in an initial matrix
x0 x1 x2 x3
x4 x5 x6 x7
x8 x9 x10 x11
x12 x13 x14 x15

 =


c0 c1 c2 c3
k0 k1 k2 k3
k4 k5 k6 k7
t0 t1 v0 v1


(c0, c1, c2, c3) are predefined constants
k = (k0, k1, ..., k7) is a 256–bit key
(v0, v1) is a 64–bit nonce,
the i-th block is the output of the Chacha function, that takes
as input the key, the nonce, and a 64-bit counter t = (t0, t1)
corresponding to the integer i
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Two examples of ARX ciphers:Chacha

A keystream block Z is then defined as

Z = X + X r

where ”+” symbolizes wordwise integer addition, and where
X r = Roundr (X ) and r is the round number;

Round is the round function based on the following nonlinear
operation (also called the quarterround function)
(x0, x1, x2, x3)→ (z0, z1, z2, z3) by sequentially computing

b0 = x0 � x1, b3 = (x3 ⊕ b0)≪16

b2 = x2 � b3, b1 = (x1⊕ b2)≪12

z0 = b0 � b1, z3 = (b3 ⊕ z0)≪8

z2 = b2 � z3, z1 = (b1 ⊕ z2)≪7
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Two examples of ARX ciphers:Chacha

in odd numbers of rounds, the nonlinear operation is applied
to the columns
(x0, x4, x8, x12), (x1, x5, x9, x13), (x2, x6, x10, x14), (x3, x7, x11, x15)

in even numbers of rounds, the nonlinear operation is applied
to the diagonals
(x0, x5, x10, x15), (x1, x6, x11, x12), (x2, x7, x8, x13), (x3, x4, x9, x14),
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Algebraic cryptanalysis

Deterministic key-recovery attack based on solving a system
of equations that represents the encryption (or decryption)
function.

The set of indeterminates of the system consists of variables
that represent a plaintext as well as a ciphertext, the internal
states of the cipher, and the key used for
encryption/decryption.

Given a plaintext and its corresponding ciphertext, one
recovers the key by solving the system of equations.
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Algebraic cryptanalysis

A common approach to mount algebraic attack is to construct
the system of equations with coefficients in the binary field F2.

In the context of ARX ciphers, bitwise XOR corresponds to
addition in F2 and bitwise rotation is a linear operation over
F2.

The only nonlinear function over F2 in ARX ciphers is
modular addition.

In terms of coordinate-wise operation, the computation of the
modular addition involves a carry bit. The value of the i-th
carry bit depends on the (i − 1)-th input bits and the
(i − 1)-th carry bit.
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Algebraic cryptanalysis

Definition

A 3-variable Boolean majority function fmaj is defined as

fmaj(x , y , z) =

{
1 wt(x , y , z) ≥ 2

0 otherwise.

Equivalently, the algebraic normal form of fmaj is equal to
fmaj(x , y , z) = xy + xz + yz .
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Algebraic cryptanalysis

Proposition

Let n be a positive integer and let ϕ : Fn
2 7→ Z2n be the function

ϕ(x) =
∑n−1

i=0 xi · 2i . where xi is the value of the i-th coordinate of
x . For any x , y , z ∈ Fn

2 such that ϕ(z) = ϕ(x)� ϕ(y), we have

zi = xi + yi + ci , 0 ≤ i ≤ n − 1

where c0 = 0 and cj = fmaj(xj−1, yj−1, cj−1) for j = 1, 2, . . . , n − 1.

Remark

The degree of the coordinate function in modular addition
increases proportionally to the significance of the bit of z .

S. Barbero

An overview on cryptanalysis of ARX ciphers



Linear Cryptanalysis

Introduced by Matsui in order to attack block ciphers (DES,
FEAL) and find an ”effective” linear expression which
describes a given cipher algorithm obtaining one or more
linear relations among the parities of plaintext,ciphertext and
the secret key.

Let P, C and K denote the plaintext, the ciphertext and the
key respectively

P[i1, i2, . . . , ia]⊕ C [j1, j2, . . . , jb] = K [k1, k2, . . . , kc ]

where i1, i2, . . . , ia, j1, j2, . . . , jb, k1, k2, . . . , kc are fixed bit
locations.

the previous equality must hold with a probability p 6= 1
2 for a

randomly given plaintext P and the corresponding ciphertext
C , with effectiveness |p − 1

2 |.
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Linear Cryptanalysis

Once we succeed in obtaining this equality, we are able to
determine one key bit K [k1, k2, . . . , kc ] with the following
algorithm based on the maximum likelihood method:

evaluate the number T of plaintext such that the left side of
this equation is equal to 0;

if N is the number of plaintext and T > N
2 then guess

K [k1, k2, . . . , kc ] = 0 or K [k1, k2, . . . , kc ] = 1 respectively
when p > 1

2 or p < 1
2 , otherwise guess K [k1, k2, . . . , kc ] = 1

or K [k1, k2, . . . , kc ] = 0 respectively when p > 1
2 or p < 1

2 .
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Linear Cryptanalysis

Clearly, the success rate of this method increases when N or
|p − 1

2 | does. Thus the fundamental purposes in order to apply this
attack are:

find effective linear expressions;

obtain an explicit description of the success rate by N and p;

search best espressions and evaluate the best probabilities, i.e.
those expressions having a probability p which gives the
maximum value of |p − 1

2 |.
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Linear Cryptanalysis

An useful concept related to linear cryptanalysis is the idea of
correlation.

We define the inner product for two n–bit boolean vectors x
and y as x · y =

⊕n−1
i=0 xiyi ,

Considering a vectorial boolean function f : F2n → F2m if Γin

and Γout are the masks for input x and output f (x)
respectively, we can define the correlation of the linear
approximation as

Cor(Γin, Γout) = 2 · P(Γin · x ⊕ Γout · f (x) = 0)− 1.
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Linear Cryptanalysis

The correlation gives a clear measure of ”affinity” between the
parities of plaintext and ciphertext and also can be evaluated
for more rounds obtained by the composition of r round
functions fi .

If we consider the iterated permutation g = fr−1 ◦ · · · ◦ f1 ◦ f0,
we have that a linear approximations (γi , · · · , γi+1) of a single
round fi can be concatenated into a linear trail
(γ0, γ1, · · · , γr ) of g

The correlation of the linear trail can be calculated as

Cor(γ0, γr ) =
r−1∏
i=0

Cor(γi , γi+1).

Correlation is also used to evaluate the expected value of the
data complexity of a linear attack.
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XOR-Differential cryptanalysis

Introduced by Biham and Shamir with the basic idea of
exploiting pairs of plaintext with certain differences yielding to
other certain differences in the corresponding ciphertexts (or
internal states of the cipher) which have a non–uniform
distribution.

Given a n–bit input and corresponding output strings
X = [X1,X2, . . . ,Xn] and Y = [Y1,Y2, . . . ,Yn] and denote
with (X ′,X ′′) a pair of input with corresponding pair of
output (Y ′,Y ′′), the related input and output differerences are

∆X = X ′ ⊕ X ′′ = [X ′1 ⊕ X ′′1 ,X
′
2 ⊕ X ′′2 , . . . ,X

′
n ⊕ X ′′n ],

∆Y = Y ′ ⊕ Y ′′ = [Y ′1 ⊕ Y ′′1 ,Y
′
2 ⊕ Y ′′2 , . . . ,Y

′
n ⊕ Y ′′n ].
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XOR-Differential cryptanalysis

Differential cryptanalysis studies when, given a particular ∆X ,
a particular ∆Y occurs with a probability distribution much
different from the uniform one.

Evaluate P[∆Y |∆X ] and compare this value with the
expected one from an uniform distribution.

If P[∆Y |∆X ] is greater or less than the uniform probability
we call the pair (∆X ,∆Y ) a differential.
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XOR-Differential cryptanalysis

Finding one or more differential can help to distinguish a
ciphertext from randomness and to recover the (partial) key
used in the cipher.

Encrypt many pairs of chosen plaintexts having difference ∆X
and try to decrypt the corresponding ciphertexts using all the
possible subkeys to get the outputs (or internal states) Y .

Checking the frequency that ∆Y occurs, we can select with
high probability the correct subkey, observing that this
frequency of ∆Y must be close to the conjectured value
P[∆Y |∆X ].
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XOR-Differential cryptanalysis

It is not always necessary to predict the full n–bit values of
∆Y : a differential which only predicts parts of a n–bit value is
a truncated differential

There are some generalizations of differentials, e. g. the
higher order differentials considering differences of differentials
and impossible differentials which are differentials which
occurs with low probability.
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Additive-Differential cryptanalysis

Introduced to study the difference of two outputs of an ARX
operation taking in account also the effects of modular
addiction.

A standard ARX operation is defined as

ARX (a, b, d , r) = ((a� b)≪ r)⊕ d

where a, b, d are n–bit vectors

Fixing the additive differences ∆α, ∆β, ∆λ and ∆µ, define
the difference ∆e between two outputs of ARX as

∆e = ARX (a�∆α, b �∆β, d �∆λ, r)� ARX (a, b, d , r),

Additive differences pass through modular addition with
probability one, thus we have ∆γ = ∆α�∆β
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Additive-Differential cryptanalysis

we may define adpARX the additive differential probability of
ARX as

adpARX = (∆γ,∆λ
r−→ ∆µ) =

| {(a� b, d) : ∆e = ∆µ} |
| {( a� b, d)}|

.

An estimation of adpARX can be obtained as the product of
the additive differential probabilities of rotation and XOR, :
adp≪r and adp⊕.
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Additive-Differential cryptanalysis

The additive differential of rotation and XOR are respectively
defined as

∆R = ((a�∆α)≪r )� (a≪r )

∆X = ((a�∆α)⊕ (d �∆β))� (a⊕ d)

where ∆α and ∆β are fixed differentials.

There are only four possibilities for ∆R because
∆R ∈ {(∆Ru,v = ∆α≪r )− u2r + v , u, v ∈ {0, 1}} we
have

adp≪(∆α
r−→ ∆R) = P(u, v),
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Additive-Differential cryptanalysis

P(0, 0) = P(∆α→ ∆R0,0) = 2−n(2r −∆αL)(2n−r −∆αR),

P(0, 1) = P(∆α→ ∆R0,1) = 2−n(2r −∆αL − 1)∆αR ,

P(1, 0) = P(∆α→ ∆R1,0) = 2−n∆αL(2n−r −∆αR),

P(1, 1) = P(∆α→ ∆R1,1) = 2−n(∆αL + 1)∆αR ,

∆αL,∆αR are respectively the words composed of the r most
significant and the n − r least significant bits of ∆α.
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Additive-Differential cryptanalysis

On the other hand we define

adp⊕(∆α,∆β → ∆γ) =
| {(c , d) : ∆X = ∆γ} |

| {(c , d)} |
.

Therefore

adpARX ∼=
4∑

i=1

(adp≪(∆α
r−→ ∆ρi )adp

⊕(∆ρi ,∆λ→ ∆µ)),

where ∆ρi , i = 1, 2, 3, 4 are the four possible output
differences after the rotation.
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Additive-Differential cryptanalysis

This evaluation of adpARX would be accurate if the inputs to
the rotation and to the XOR operation were independent, but
a counterexample due to Velichov et al. shows that they are
not.

We need an alternative way in order to correctly find adpARX

and this probability can be evaluated, for example, using
S–functions
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Rotational-Differential cryptanalysis

Introduced in order to study the propagation of rotations
throughout the encryption steps of an ARX scheme.

X ,Y be messages of n bits
←−
X = X ≪1

−→
X = X ≫1 and S

an ARX scheme with q additions. The rotational cryptanalysis
is based on the following properties:

−−−−→
X ⊕ Y =

−→
X ⊕

−→
Y−→

X ≪r=
−−−−→
X ≪r

pr := Pr(
−−−−→
X � Y =

−→
X �

−→
Y ) = 1

4 (1 + 2r−n + 2−r + 2−n)
this probability is maximized to 2−1.415 when n is large and
r = 1
S(
−→
X ) =

−−−→
S(X ) with probability (pr )

q

given a random function P : Zn
2 → Zn

2, P(
−→
X ) =

−−−→
P(X ) with

probability 2−n
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Rotational-Differential cryptanalysis

Thus, we can detect nonrandomness in the ARX scheme S if
(pr )q > 2−n. For example, when r = 1, an ARX scheme
implemented with less than t/1.415 additions is vulnerable to
rotational cryptanalysis.
In general the attack procedure is

Generate a random plaintext P and evaluate C = SK (P),
where K is the first secret key

Evaluate P ′ =
←−
P ⊕ d , where d is the correction due to the

presence of constants

Evaluate C ′ = SK ′(P ′), with K ′ =
←−
K ⊗ e the second key

Check if (C ,C ′) is a rotational pair
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Rotational-XOR cryptanalysis with constants
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Rotational-XOR cryptanalysis with constants
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Rotational-XOR cryptanalysis with constants

We introduce some notations

x = (xn−1, xn−2, . . . , x1, x0) a n-bit boolean vector,

SHL(x) an arithmetic left shift of x by one bit,
(I ⊕ SHL)(x) = x ⊕ SHL(x)

x |y the vector bitwise OR operation,

x ||y the concatenation of x and y

|x | the Hamming weight of a boolean vector x

L(x) the γ most significant bits of x

L′(x) the n − γ most significant bits of x

R(x) the n − γ least significant bits of x

R ′(x) the γ least significant bits of x

x � y holds if and only if xi ≤ yi for all i = 0, · · · , n − 1
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Rotational-XOR cryptanalysis with constants

Theorem (T. Ashur, Y. Liu)

Let x , y ∈ F2n be independent random variables. Let a1, b1, a2, b2,∆1,∆2

be constants in F2n then

P[
←−−−−−−−−−−−−−−−−−−
(x ⊕ a1)� (y ⊕ b1)⊕∆1 = (←−x ⊕ a2)� (←−y ⊕ b2)⊕∆2]

is equal to 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))|−3 if the following condition holds

(I ⊕ SHL)(δ1 ⊕ δ2 ⊕ δ3)⊕ 1 � SHL((δ1 ⊕ δ3)|(δ2 ⊕ δ3)),

otherwise is equal to 2−|SHL((δ1⊕δ3)|(δ2⊕δ3))|−1.415 if the following
condition holds

(I ⊕ SHL)(δ1 ⊕ δ2 ⊕ δ3) � SHL((δ1 ⊕ δ3)|(δ2 ⊕ δ3))

where δ1 = R(a1)⊕L′(a2),δ2 = R(b1)⊕L′(b2) and δ3 = R(∆1)⊕L′(∆2).
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Rotational-XOR cryptanalysis with constants

Lemma (E. Shulte–Geers)

Let ζ1, ζ2, ζ3 ∈ F2n be constants. Let x , y ∈ F2n be independent random
variables. Then

P[x � y = (x ⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3] = 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))|

if the following condition holds

(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3) � SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3))

and P[x � y � 1 = (x ⊕ ζ1)� (y ⊕ ζ2)⊕ ζ3] = 2−|SHL((ζ1⊕ζ3)|(ζ2⊕ζ3))| if
the following condition holds

(I ⊕ SHL)(ζ1 ⊕ ζ2 ⊕ ζ3)⊕ 1 � SHL((ζ1 ⊕ ζ3)|(ζ2 ⊕ ζ3))

S. Barbero

An overview on cryptanalysis of ARX ciphers



Rotational-XOR cryptanalysis with constants-SPECK32/64
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Rotational-XOR cryptanalysis with constants-SPECK32/64
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Automated search for RX-Characteristics

A possible path of RX-differences through different encryption
rounds of a block cipher is called an RX-characteristic

Using the notation
∆1x = x ⊕←−x

the RX-differences in round i with 0 ≤ i ≤ r , are

∆1ai ≫α,∆1bi ,∆1di

and for the key schedule

∆1li ≫α,∆1ki ,∆1ei ,∆1c

where c depends on round number i .
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Automated search for RX-Characteristics

Search of valid r -round RX-characteristics for SPECK 32/64
with Automated Search (SAT-Solvers) finding when the
boolean bits of RX-differences in round i with 0 ≤ i ≤ r
satisfy one of the conditions of Theorem 1 plus the additional
conditions for 0 ≤ j < n

∆1a
j
i+1 = ∆1d

j
i ⊕∆1k

j
i

∆1b
j
i+1 = ∆1b

j−β
i ⊕∆1a

j
i+1

Similar situation concerning the key schedule in order to find a
valid r -round RX-characteristic, with the additional conditions
for 0 ≤ j < n

∆1l
j
i+1 = ∆1e

j
i ⊕∆1c

∆1k
j
i+1 = ∆1k

j−β
i ⊕∆1l

j
i+1
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Automated search for RX-Characteristics

Importance of software libraries as Arxpy to test theorical
results.
Some data from the paper of T. Ashur and Y.Liu
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Automated search for RX-Characteristics
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Future works

A deep comprehension of these results, in order to repeat the
empirical data of the authors and consider the feasibility of a
generalization to at least a toy version of Chacha, a lot of
work in progress!
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