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Fermat (1607-1665)

In a letter to Pierre de Carcavi, August 14th, 1659, Pierre
de Fermat reported several propositions, in particular

Teorema (Fermat)

Every prime p of the form 4k + 1 is uniquely expressible as a
sum of two squares, i.e.

p = X2 + Y 2 ⇔ p ≡ 1 mod 4 (1)
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Computation of X and Y in equation (1)

Two challenges were implicit in Fermat’s problem

1 Prove Fermat statement

2 For all primes p ≡ 1 mod 4, compute explicitly the positive
integers X and Y such that

p = X2 + Y 2 .

When a solution exists, it is obtained checking every
possibility, using a O(

√
p) arithmetical operations:

Write Y =
√
p−X2 and check every integer X <

√
p until

Y is found.

When N = 1 + n2, only one chack is needed, for example
N = 152415222070337 =

1 + 123456562
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Proof of Theorem (fermat) - Euler (1707-1783)
(constructive proof )

Probably the first proof of Fermat proposition is due to Euler
(1749), and uses Fermat’s infinite descent.

The equation X2 + Y 2 = p implies the modular equation
x2 + 1 = 0 (mod p), which has a solution |x0| < p

2 by the
little Fermat’s theorem,
i.e. xp−1 = 1 (mod p), and p = 4k + 1.

x2
0 + 1 = s0 p with s0 <

p
2

Setting x1 = x0 (mod s0) and x2 = 1 (mod s0), we have

x2
1+x2

2 (mod s0) = x2
0+1 (mod s0) = 0⇒ x2

1 + x2
2 = s0s1

with s1 <
s0
2 .
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Proof (cont.)

Multiplying s0p by s0s1, and using an identity already
known to Diophantus, we have

s2
0s1p = (x2

1 +x2
2)(x2

0 +1) = (x0x2−x1)2 +(x0 x1 +x2)2 (2)

Since x0x2 = x1 (mod s0) by definition of x1 e x2,
we have s0|(x0x2 − x1), thus dividing (2) by s2

0

s1p =
(
x0x2−x1

s0

)2
+
(
x0 x1+x2

s0

)2

the rightest term is necessarily an integer.
The first step of the infinite descent is complete.

Iterating, the process a sequence of positive decreasing
terms is produced

s0 > s1 > s2 · · · > 1

which necessarily ends with 1.
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One sentence proof (Zagier’s proof)
(non constructive)

Consider a prime p = 4k + 1, and define the finite set of triples
T = {(x, y, z) ∈ Z3

+ : x2 + 4yz = p} which has two involutions

1 The first involution is

(x, y, z)→ (x, z, y) and fixes (x, y, y)) .

2 The second involution has a more complex definition

(x, y, z)→


(x+ 2z, z, y − x− z) if x < y − z
(2y − x, y, x− y + z) if y − z < x < 2y
(x− 2y, x− y + z, y) if x > 2y

,

and has the unique fixed point (1, 1, k) ∈ T .
Since involutions on the same finite set must have a
number of fixed points with the same parity, if follows that
(x, y, y) ∈ T , i.e. x2 + (2y)2 = p necessarily has a solution.
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Constructive proofs

The problem of effectively computing a solution to X2 + Y 2 = p
(p = 4k + 1) was considered by many authors in different times.

1 Gauss (1825) gave two ways, the first is direct

x =
(2k)!

2(k!)2
mod p , y =

((2k)!)2

2(k!)2
mod p .

the second is based on quadratic forms of discriminant −4

p→ pX2 + 2b1XY +
b21 + 1

p
Y 2 → x2 + y2

where b1 is a root of z2 + 1 modulo p.
2 Jacobsthal (1906) solution is based on the sum

S(a) =

p−1∑
n=1

(
n(n2 − a)

p

)
⇒ x =

1

2
S(QR) , y =

1

2
S(QN)

where QR,QN ∈ Zp such that (QR | p) = 1 and (QS | p) = −1 .
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Constructive proofs (cont.)

1 Legendre (1808) (pages 59-60 of Essai sur la Théorie des
Nombres ) showed, using the continued fraction expansion
of
√
p, that the convergent pm

qm
with m = τ−1

2 yields

X = p2
m −Nq2

m (= ∆m) , Y =
√
N −X2

It is noted that Y may also be computed from the
convergents as

Y = pmpm−1 −Nqmqm−1 (= Ωm).

2 The Legendre finding is a consequence of the palindromic
character of the quotient sequence a1, . . . , aτ−1
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Legendre own words

... Donc tous le fois que l’équation x2 −Ay2 = −1 est résoluble
(ce qui ha lieu entre autre cas lorsque A est un numbre premier
4n+ 1) le nombre A peut toujours être decomposé en deux
quarrés; et cette décomposition est donnée immediatement par

lo quotient-complet
√
A+I
D qui répond au second des quotients

moyens compris dans la première période du développement de√
A; le nombres I et D étant ainsi connu, on aura

A = D2 + I2.

Cette conclusion ranferme un des plus beaux théorèmes de la
science des nombres, savoir, que tout nombre premier 4n+ 1 est
la somme de deux quarrés; elle donne en même temps le moyen
de faire cette décomposition d’une manière directe et sans
aucun tâtonnement.
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Example

Consider N = 149 , the period of the continued fraction of√
149 is 9,

j ∆j Ωj
0 -5 8

1 17 -8
2 -4 9
3 7 -11

4 -7 10

5 4 -11
6 -17 9
7 5 -8
8 -1 12

9 5 -12

10 -7 11

In position 4 we find −7 and 10, i.e. 72 + 102 = 149.
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The Problem

A question is naturally suggested by the tricky property that
Legendre discovered when the continued fraction expansion of√
N has odd period:

What happens when the continued fraction
expansion of

√
N has even period?
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Continued Fractions

Simple continued fractions (ai > 0, i > 0, ai ∈ N) are
expressions of the form

a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

, (3)

where the ais are called quotients. The (simple) continued
fractions may be finite or infinite. Infinite continued fraction are
periodic when a finite pattern of quotients repeats indefinitely.
Periodic continued fractions are compactly written in the form

α = [b0, . . . , bk, a1, a2, . . . , aτ−1, aτ ] , (4)

where the period of length τ is over-lined, and the pre-period is
evidenced in red.
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Continued Fractions - Lagrange (1736-1813)

If N is a positive non-square integer, we have

√
N =

[
a0, a1, a2, . . . , a2, a1, 2a0

]
where the first τ − 1 terms of the period are a palindrome.

Theorem (Nouv. Mem. Acad. R. Berlin 1769/70)

A number α ∈ R\Q is a quadratic irrational (i.e. α = a+b
√
N

c ) if
and only if its continued fraction expansion is periodic.
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Examples

Let τ denote the period.

√
91 =

[
9, 1, 1, 5, 1, 5, 1, 1, 18

]
τ = 8

A continued fraction is said purely periodic if the pre-period is missing.

5 +
√

91

8
=
[

1, 1, 4, 2, 10, 2, 4, 1, 1, 1, 1, 3, 4, 1, 4, 3, 1, 1
]
τ = 18

√
89 =

[
9, 2, 3, 3, 2, 18

]
τ = 5

9 +
√

89

8
=
[

2, 3, 3, 2, 18
]

τ = 5

5 +
√

89

8
=

[
1, 1, 4, 9, 4, 1, 1

]
τ = 7 .
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Galois (1811-1832)

A quadratic irrational α is said to be reduced if α > 1 and its
conjugate α′ lies in the interval −1 < α′ < 0. (Steuding
p.75-78).

Theorem (Annals de Gergonne,1829)

The continued fraction expansion of a quadratic irrational
number α is purely periodic if and only if α is reduced. In this
case for the conjugate α′ of

α = [a0, a1, a2, . . . , aτ−2, aτ−1]

we have

− 1

α′
= [aτ−1, aτ−2, . . . , a1, a0] (5)
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(cont.) A Corollary

Given p = 1 mod 4 prime, then p = Q2
m + P 2

m, Qm < Pm.

Consider α =
Qm+

√
p

Pm
∈ Q(

√
p), we have α > 1 and

α′ =
Qm−

√
p

Pm
∈]− 1, 0[, thus by the theorem of Galois the

continued fraction expansion of α is purely periodic
Since αα′ = −1, the period turns out to be palindromic.

Example. Consider N = 89 = 52 + 82, we have

√
89⇒ [[9], [2, 3, 3, 2, 18]]

α =
5 +
√

89

8
⇒ [1, 1, 4, 9, 4, 1, 1]⇐ − 1

α′
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The continued fraction of
√
N

Let
√
N = [a0, a1, a2, . . . , aτ−1, aτ ], the m-convergent is the

fraction obtained considering only the first m terms.
The sequence of convergents is

p0

q0
=
a0

1
,
p1

q1
=
a0a1 + 1

a1
, · · · , pj

qj
=
ajpj−1 + pj−2

ajqj−1 + qj−2
, · · ·

Two sequences ∆ = {∆j}∞j=1 and Ω = {Ωj}∞j=1 are defined as
∆j = p2

j −Nq2
j

Ωj = pjpj−1 −Nqjqj−1

Ω2
j −∆j∆j−1 = N

j = 1, 2, . . .

∆τ−1 = (−1)τ
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(cont.)

1 Let cn and rn be the elements of two sequences of positive
integers defined by the relation

√
N + cn
rn

= an+1 +
rn+1√
N + cn+1

with c0 =
⌊√

N
⌋
, and r0 = N − a2

0; the elements of the

sequence a1, a2, . . . , an . . . are thus obtained as the integer
parts of the left-side fraction

an+1 =

⌊√
N + cn
rn

⌋
=

⌊
c0 + cn
rn

⌋
. (6)
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(cont.)

1 Let a0 = b
√
Nc, the sequences {cn}n≥0 and {rn}n≥0 are

produced by the recursions

am+1 =
⌊
a0+cm
rm

⌋
cm+1 = am+1rm − cm
rm+1 =

N−c2m+1

rm
.

(7)

These recursive equations allow us to compute the sequence
{am}m≥1 using only rational arithmetical operations

2

cm+1 = |Ωm| , rm+1 = |∆m| .
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(cont.) Periodic sequences

Theorem

Let N ∈ Z+ be square-free, then:

The sequence ∆ = {∆1,∆2, · · · ,∆τ−1,∆τ , · · · } is periodic with
period τ , or 2τ if τ is odd. The first τ − 3 terms of a period
satisfy the condition of symmetry ∆m = (−1)τ∆τ−m−2.

The sequence Ω = {Ω1,Ω2, · · · ,Ωτ−1,Ωτ , · · · } is periodic with
period τ , or 2τ if τ is odd. The first τ − 2 terms of a period
satisfy the condition of symmetry Ωm = −(−1)τΩτ−1−m.
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(cont.)

Theorem

The quadratic forms

fm(X,Y ) = ∆mX
2 + 2ΩmXY + ∆m−1Y

2 ⇔ [∆m, 2Ωm,∆m−1]

have discriminant 4N .

In every period (of length τ or 2τ) the correspondence m↔ fm
is one-to-one.
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Example

τ = 10 even
√

543 = [[23], [ 3, 3, 3, 1, 14, 1, 3, 3, 3, 46]]
∆ [13,−11, 34,−3, 34,−11, 13,−14, 1,−14]
Ω [−19, 20,−13, 21,−21, 13,−20, 19,−23, 23]

In position 4 of the period of ∆ we find −3, a factor of 543

τ = 11 odd
√

6437 = [[80], [4, 3, 39, 1, 4, 4, 1, 39, 3, 4, 160]]
∆ [49,−4, 127,−31, 31,−127, 4,−49, 37,−1, 37]
Ω [−68, 79,−77, 50,−74, 50,−77, 79,−68, 80,−80]

In position 5 of the period we find 312 + (−74)2 = 6437
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τ odd (a proof of Legendre’s yheorem)

Set m = τ−1
2 , then τ −m− 2 = τ−3

2 . The symmetry in every
period of the sequence ∆ implies ∆ τ−3

2
= −∆ τ−1

2
, thus the

computation of the discriminant of the quadratic form f τ−1
2

lets

us to conclude
p = ∆2

τ−1
2

+ Ω2
τ−1
2

(8)

What is the complexity for computing ∆ τ−1
2

and Ω τ−1
2

?
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τ even - Main theorem (I)

Theorem

Let N be an odd square-free composite integer such that the
continued fraction for

√
N has even period, then

1 The fundamental unit u ( or u3 ) in Q(
√
N) factors 2N ,

2 One of the factors of 2N can be found in the positions
τ−2

2 + jτ , j = 0, 1, . . . of the infinite periodic sequence ∆.
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Outline of the proof

Consider the j-convergent
Aj
Bj

, and define the column vector

[Aj , Bj ]
T . Since Aτ−1 +Bτ−1

√
N is a unit in Q(

√
N), the

matrix

Mτ−1 =

[
−Aτ−1 NBτ−1

−Bτ−1 Aτ−1

]
,

is involutory, and has characteristic polynomial Z2 − 1, i.e.
eigenvalues ±1, since the trace is 0 and the determinant
−A2

τ−1 +NB2
τ−1 = (−1)τ−1, is −1.

With a rather long argument, it can be proved that[
Aτ−j−2

Bτ−j−2

]
= (−1)jMτ−1

[
Aj
Bj

]
. (9)
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proof (cont.)

When τ − `− 2 = `, i.e. ` = τ−2
2 , we have two possibilities

depending whether ` is even or odd

Aτ−`−2 = A` = A e Bτ−`−2 = B` = B even `

Aτ−`−2 = −A` = −A and Bτ−`−2 = −B` = −B odd `

Therefore [A,B]T turns out to be an eigenvector of the matrix

Mτ−1 with eigenvalue (−1)
τ−2
2 .
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proof (cont.)

Thus, we have that any eigenvector of the matrix Mτ−1 is a

scalar multiple of 1
d [Aτ−1 − (−1)

τ−2
2 , Bτ−1], where

d = gcd{Aτ−1 − (−1)
τ−2
2 , Bτ−1}. Since gcd{A,B} = 1, from the

identification [A,B] = 1
d [Aτ−1 − (−1)

τ−2
2 , Bτ−1], it follows that

A =
Aτ−1 − (−1)

τ−2
2

d
, B =

Bτ−1

d
;

thus, from the chain of equalities

∆ τ−2
2

= A2 −NB2 = 2
−(−1)

τ−2
2 Aτ−1 + 1

d2
= 2(−1)

τ
2
A

d

it follows that 2Ad divides 2N , that is ∆ τ−2
2

is a divisor of 2N .
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Example

Consider N = 3 · 5 · 7 · 11 · 19 = 21945; the period of the
continued fraction of

√
21945 is found to be 10,

j ∆j Ωj
0 -41 148

1 64 -139
2 -129 117
3 16 -141

4 -21 147

5 16 -147
6 -129 141
7 64 -117
8 -41 139

9 1 -148
10 -41 148

11 64 -139

In position j = τ−2
2 = 4 we find −21, a factor of N .
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Open problem

∆ τ−2
2

is a divisor of 2N , but depending on the factors of N , it

may be equal 2, a trivial factor.

Find the conditions on N for having ∆ τ−2
2
6= 2.

When N = p q is the product of two prime numbers, the
conditions are known.
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Main theorem (II)

Theorem

Let N be a product of two primes p, q congruent 3 modulo 4,
then period τ is even and

∆ τ−2
2

=

(
p

q

)
p with p < q .

What is the complexity for computing ∆ τ−2
2

?
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Factorizability of N = pq

p mod 8 q mod 8 Split? (p | q) ∆τ/2−1 T mod 4

3 3 Yes ±1 − (p | q) p 1 + (p | q)
3 7 Yes ±1 − (p | q) p 1 + (p | q)
7 3 Yes ±1 − (p | q) p 1 + (p | q)
7 7 Yes ±1 − (p | q) p 1 + (p | q)
5 3 Yes 1 p 0
3 5 Yes 1 −p 2
5 3 Yes −1 2p 0
3 5 Yes −1 −2p 2
5 7 Yes 1 p 0
7 5 Yes 1 −p 2
5 7 Yes −1 −2p 2
7 5 Yes −1 2p 0

1 3 No −1 −2 2
1 3 Yes 1 p AND 0
1 3 No/Yes 1 −2,−2p 2
3 1 No −1 2
3 1 Yes 1 2p AND 0
3 1 No/Yes 1 −2,−p 2

Table : p < q
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Factorizability of N = pq

7 1 No −1 2 0
7 1 No 1 2 AND 0
7 1 Yes 1 −p,−2p 2
1 7 No −1 2 0
1 7 No/Yes 1 2, p, 2p 0

5 1 No −1 1, 3
5 1 No 1 AND 1, 3
5 1 Yes 1 −p AND 2
5 1 Yes 1 p AND 0
1 5 No −1 1, 3
1 5 No 1 AND 1, 3
1 5 Yes 1 −p AND 2
1 5 Yes 1 p AND 0
5 5 No −1 1, 3
5 5 No 1 AND 1, 3
5 5 Yes 1 −p AND 2
5 5 Yes 1 p AND 0
1 1 No −1 1, 3
1 1 No 1 AND 1, 3
1 1 Yes 1 −p AND 2
1 1 Yes 1 p AND 0
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The computational problem

Assuming that
i) a factor of N is in position τ−2

2 + jτ , for some j,
ii) τ is unknown
the problem is:
How to get an unknown position τ−2

2 + jτ in the infinite
sequence

∆ = ∆1,∆2, . . . ,∆m, . . . ?

A way is offered by the
a) Shanks’s infrastructural algorithm
(based on quadratic forms) that allows us to move quickly
through the sequence ∆ with big and little jumps
b) Adopting as stopping rule the condition

∆i divides N
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Quadratic forms

A binary quadratic form f(x, y) = ax2 + 2bxy + cy2 is identified
by the triplet of coefficients

[a, 2b, c]

Definition

A real quadratic form [a, 2b, c] of discriminant 4N is said to be
reduced if b is the integer (unique in absolute value) such that√
N − |b| < κ <

√
N , where κ = min{|a|, |c|}.

We are interested in the class of reduced principal forms of
discriminant 4N : when a quadratic form is not reduced it can be
reduced by an algorithm of Gauss’.
Reduction is a linear transformation on the variable x and y,
that does not change the class of a quadratic form.
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Gauss reduction

Algorithm basic principle ( p. 75-76, G.B. Mathews, Theory of
Numbers, Chelsea )

Suppose that [a, 2b, c] is a primitive quadratic form which is not
reduced and has discriminant 4N , with |a| > |c|.
A reduction function ρ is defined as

ρ([a, 2b, c]) = [c, 2(b+ cα), a+ 2bα+ cα2] ,

where α is an integer selected to satisfy the inequality⌈√
N
⌉
− |c| ≤ b+ cα ≤

⌊√
N
⌋

.

If
|a+ 2bα+ cα2| < |c| .

the application of ρ is iterated.
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Shanks’ Infrastructure within a class

Let N be a non-square integer, and [a0, a1, a2, . . . , aτ−1, aτ ] be
the continued fraction expansion of

√
N having even period.

Let ε0 denote the positive fundamental unit of K = Q(
√
N).

The natural logarithm RK = ln ε0 is called regulator of K.
Consider the infinite sequence Υ of reduced quadratic forms

fm(X,Y ) = ∆mX
2+2ΩmXY+∆m−1Y

2 ⇔ [∆m, 2Ωm,∆m−1], m = 1, 2, . . . ,

with ∆0 = Ω2
0 −N and Ω0 = Ωτ .

Every quadratic form in Υ has discriminant 4N .
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Infrastructure - Giant step (cont.)

Theorem

The correspondence m↔ fm(x, y) for 1 + `τ ≤ m ≤ τ + `τ ,
` = 0, 1, . . ., is one-to-one, that is, in a period all quadratic
forms fm(x, y) are distinct.

Between pairs of elements in Υ it is possible to define an
operation, denoted with ”•”, for which Υ is closed:

Definition

Let fm, fn ∈ Υ be two quadratic forms, the operation fm • fn is
defined as the Gauss’s composition of two forms followed by the
reduction to the closest quadratic form in Υ (that is, the
reduction ρ is applied the minimum number of times).
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Infrastructure (cont.)

Definition (Gauss composition)

The composition f3 = f1 ◦ f2 of two forms f1 = [a1, 2b1, c1] and
f2 = [a2, 2b2, c2], having the same discriminant, is defined to be

f3 =

[
d0
a1a2

d2
, b2 +

2a2

d
(vn− wc2),

b23 −N
a3

]
,

where:
n = b1 − b2, d = gcd{a1, a2, b1 + b2}, d0 = gcd{d, c1, c2, n}, and
v, w are obtained using the extended Euclidean algorithm to
satisfy the condition

d = ua1 + va2 + w(b1 + b2).
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Infrastructure (cont.)

It is possible to introduce a metric, compatible with the
composition • by defining a distance between two contiguous
quadratic forms in the sequence Υ

d(fm, fm+1) =
1

2

∣∣∣∣∣ln
√
N + (−1)mΩm√
N − (−1)mΩm

∣∣∣∣∣ .

The distance between two quadratic forms fm(x, y) and fn(x, y),
with m > n, is defined to be the sum

d(fm, fn) =

m−1∑
j=n

d(fj+1, fj) . (10)
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Infrastructure (cont.)

Assuming f0 = fτ , it is possible to prove that

d(f0, fτ ) = ln ε0 (or 3 ln ε0)

where ε0 is the fundamental unit of K.

Shanks observed that, for the composition • of quadratic forms,
with a good approximation we have

d(f0, fm • fn) ≈ d(f0, fm) + d(f0, fn)

The approximation error is of polynomial order O((lnN)κ)
(Schoof).
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Infrastructure - Baby step (cont.)

It is also possible to move forward or backward from a
quadratic form fm = [∆m, 2Ωm,∆m−1] to the contiguous forms
fm+1 or fm−1 respectively:
Moving forward

fm+1 = ρ+(fm) =

[
b21 −N

∆m
, 2b1,∆m

]
,

where b1 is computed as 2b1 = [2Ωm mod (2∆m)] + 2k∆m with
k chosen in such a way that −|∆m| < b1 < |∆m|.
Moving backward

fm−1 = ρ−((fm) =

[
∆m−1, 2b1,

b21 −N
∆m−1

]
,

where b1 is computed as 2b1 = [−2Ωm mod (2∆m−1)] + 2k∆m−1

with k chosen in such a way that −|∆m−1| < b1 < |∆m−1|.
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Remark

1 The sign of ∆m−1 is the same of Ωm, which is opposite to
that of ∆m, thus in the sequence Υ the two triples of signs
(−,+,+) and (+,−,−) alternate.

2 The distance of fm(x, y) from the beginning of Υ is defined
by referring to a hypothetical quadratic form f0(x, y)
properly defined, i.e.
f0(x, y) = fτ (x, y) = ∆0x

2 + 2
√
N + ∆0xy + y2, which is

located before f1(x, y), that is

d(fm, f0) =

m−1∑
j=0

d(fj+1, fj) if m ≤ τ , (11)

and by d(fm, f0) = d(fm mod τ , f0) + kRF if
kτ ≤ m < (k + 1)τ .
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Remark

1 Shanks observed that, within the first period, the
composition law ”•” induces a structure similar to a cyclic
group for the addition of distances modulo the regulator,
(or three times the regulator).

2 Between the elements of Υ the distance is nearly
maintained by the giant-steps, and is rigorously maintained
by the baby-steps.

Theorem

The distance d(fτ , f0) is exactly equal to ln cτ−1, i.e. this
distance d(fτ , f0) is either the regulator RK or 3RK.
The distance d(f τ

2
, f0) is exactly equal to 1

2 ln cτ−1,
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Example of giant and baby steps

a1 a2 . . . am . . . an . . . a`(m,n) . . . aτ . . .

∆1 ∆2 . . . ∆m . . . ∆n . . . ∆`(m,n) . . . ∆τ . . .

f1 f2 . . . fm . . . fn . . . f`(m,n) . . . fτ . . .

d1 d2 . . . dm . . . dn . . . dm + dn . . . ln(cτ−1) . . .

fm • fn = f`(m,n) ⇔ d`(m,n) ≈ dm + dn

. . . am−1 am am+1 . . .

. . . ∆m−1 ∆m ∆m+1 . . .

. . . fm−1 fm fm+1 . . .

. . . dm−1 dm dm+1 . . .

fm+1 = ρ+(fm) ⇔ dm+1 = dm +
1

2
ln

√
N + (−1)mΩm√
N − (−1)mΩm
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Factoring

Let N be a composite non-square integer, and let N ′ be the
product of all primes in N . Assume that the continued fraction
of
√
N ′ has even period.

Let hK be the class number of K = Q(
√
N ′) with fundamental

positive unit ε0, and regulator RK = ln ε0.
Since cτ−1 is either equal to the positive fundamental unit of K
or equal to its cube, the regulator of OK is either RK = ln cτ−1 ,
or RK = 1

3 ln cτ−1.

Theorem

If the fundamental unit u (or u3) of K splits N , the
computational complexity for obtaining a non-trivial factor is
not greater than the complexity for computing the product
hKRK.
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Dirichlet

A celebrated Dirichlet’s formula establishes the equality

hKRK =

√
N

2
L(1, χN )

where

χ is a Kronecker character that, in this case, is given by the

Jacobi symbol

(
N

·

)
.

L(1, χN ) is a L-function of Dirichlet defined by the series

∞∑
n=1

(
N

n

)
1

n
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A conditional theorem

Dirichlet’s result lets us to formulate a conditional theorem

Theorem

The factoring complexity of a composite N which is split by the
unit cτ−1 (in particular N = pq, with p = q = 3 mod 4) is not
greater than the complexity for evaluating the series

√
N

∞∑
n=1

(
N

n

)
1

n

with an approximation of the order O((lnN)a), a > 0.
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L(1, χN) (cont.)

The direct computation of L(1, χN ) is impractical when N is
large. Using the functional equation, the following expression
was derived

L(1, χN ) =
∑
x≥1

(
N

x

)(
1

x
erfc(x

√
π

N
) +

1√
N
E1(

πx2

N
)

)
,

where erfc(x) is the error complementary function computable
as ([Abramowitz, p.297-299])

erfc(z) =
2√
π

∫ ∞
z

et
2
dt = 1− erf(z) = 1− 2√

π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1)

e E1(x) is the integral exponential function computable as

E1(z) =

∫ ∞
1

e−tz

t
dt = −γ − ln(z)−

∞∑
n=1

(−1)nzn

n · n!
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Conclusions

1 The factorization of an integer N can be obtained from the
continued fraction expansion of

√
N , when the period is

even.

2 If the product hKRK is computable with a good
approximation, i.e. O((lnN)κ), then it is possible to
factorize with the same complexity.

3 These properties have a significant impact in
Number theory and Cryptography .



Torino - December , 2019

Bibliography

1 Buell D.A., Binary Quadratic Forms, Springer, New York,
1989.

2 Davenport H., The Higher Arithmetic, Dover, New York,
1960.

3 Legendre A-M., Essai sur la Théorie des Nombres, Chez
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