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Outline of the presentation

@ Fermat, the equation p = 22 + y?, and Legendre
@ Properties of continued fractions

@ Convergents, quadratic forms
Periodicity and Symmetry

@ Units in real quadratic fields and Factoring
@ Shanks and Dirichlet

@ Conclusions
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Fermat (1607-1665)

In a letter to Pierre de Carcavi, August 14", 1659, Pierre
de Fermat reported several propositions, in particular

Teorema (Fermat)

Every prime p of the form 4k + 1 is uniquely expressible as a
sum of two squares, i.e.

p=X>4+Y? & p=1mod4 (1)
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Computation of X and Y in equation (1)

Two challenges were implicit in Fermat’s problem

@ Prove Fermat statement

@ For all primes p = 1 mod 4, compute explicitly the positive
integers X and Y such that

p=X>4+Y?% .
When a solution exists, it is obtained checking every
possibility, using a O(,/p) arithmetical operations:

Write Y = /p — X2 and check every integer X < ,/p until
Y is found.

When N = 1+ n?, only one chack is needed, for example
N = 152415222070337 =
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Computation of X and Y in equation (1)

Two challenges were implicit in Fermat’s problem

@ Prove Fermat statement

@ For all primes p = 1 mod 4, compute explicitly the positive
integers X and Y such that

p=X>4+Y?% .
When a solution exists, it is obtained checking every
possibility, using a O(,/p) arithmetical operations:

Write Y = /p — X2 and check every integer X < ,/p until
Y is found.

When N = 1+ n?, only one chack is needed, for example
N = 152415222070337 = 1 + 123456562
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Proof of Theorem (fermat) - Euler (1707-1783)
(constructive proof )

Probably the first proof of Fermat proposition is due to Euler
(1749), and uses Fermat’s infinite descent.

e The equation X? 4+ Y? = p implies the modular equation
224+ 1 =0 (mod p), which has a solution |zo| < & by the
little Fermat’s theorem,
ie. 2P~ =1 (mod p), and p = 4k + 1.

o 22 +1= sy p with so < &

e Setting 1 = xg (mod sp) and o =1 (mod sgp), we have
2. 2 _ 2 _ 2 2 .
xi+x5 (mod sg) = z5+1 (mod sg) =0 = z7 + 25 = s0s1

with 51 < 3.
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Proof (cont.)

o Multiplying sgp by sgsi, and using an identity already
known to Diophantus, we have

sos1p = (25 4a3) (25 +1) = (zoze —21)° + (30 21 +22)° (2)

@ Since xory = 1 (mod sp) by definition of x1 e o,
we have sg|(zoz2 — 71), thus dividing (2) by s?
2 2
° s1p = (7330908207961) + <7xo xst+m>
the rightest term is necessarily an integer.
The first step of the infinite descent is complete.
o Iterating, the process a sequence of positive decreasing
terms is produced

Sop > 81 >89 >1

which necessarily ends with 1.
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One sentence proof  (Zagier’s proof)
(non constructive)

Consider a prime p = 4k + 1, and define the finite set of triples
T ={(z,y,2) € Z3 : 2% 4+ 4yz = p} which has two involutions
@ The first involution is

(z,y,2) = (z,2,y) and fixes (z,y,y))
@ The second involution has a more complex definition

(r+2z,z,y—xz—2) if z<y—=z
(T,9,2) > Qy-—z,y,2—y+2) if y—2<2<2y
(r—2y,x—y+2zy) if z>2y

and has the unique fixed point (1,1,k) € T.

Since involutions on the same finite set must have a
number of fixed points with the same parity, if follows that
(x,y,y) € T, ie. 22+ (2y)? = p necessarily has a solution.
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Constructive proofs

The problem of effectively computing a solution to X2 +Y? =p
(p = 4k + 1) was considered by many authors in different times.

@ Gauss (1825) gave two ways, the first is direct
(2k)! ((2k)"?
o(k2 0P YT oz
the second is based on quadratic forms of discriminant —4

b2
p—pX? 4+ 201 XY + Y2%:v2+y2
p

where b; is a root of 22 + 1 modulo p.
@ Jacobsthal (1906) solution is based on the sum

P n n2 —a
S =3 () e = gs@m) L y=gs@N)

where QR, QN € Z, such that (QR | p) =1 and (QS | p) =—1.
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Constructive proofs (cont.)

@ Legendre (1808) (pages 59-60 of Essai sur la Théorie des
Nompbres ) showed, using the continued fraction expansion
of /p, that the convergent 2 with m = 751 yields

qm

X=p2 —-Ng (=A,) , Y=+/N-X2

It is noted that Y may also be computed from the
convergents as

Y = ppmpm-1 — N@gm@m—1 (: Qm)~

© The Legendre finding is a consequence of the palindromic
character of the quotient sequence aq,...,a,_1
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Legendre own words

... Donc tous le fois que l’équation x> — Ay®> = —1 est résoluble
(ce qui ha lieu entre autre cas lorsque A est un numbre premier
4dn + 1) le nombre A peut toujours étre decomposé en deux
quarres; et cette décomposition est donnée immediatement par
lo quotient-complet \/%FI qui répond au second des quotients
moyens compris dans la premiére période du développement de
VA; le nombres I et D étant ainsi connu, on aura

A=D%*+ I

Cette conclusion ranferme un des plus beaux théoremes de la
science des nombres, savoir, que tout nombre premier 4n + 1 est
la somme de deux quarrés; elle donne en méme temps le moyen
de faire cette décomposition d’une maniere directe et sans
aucun tatonnement.
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Example

Consider N = 149 , the period of the continued fraction of

V149 is 9,

J A9y
0 -5 8
1 17 -8
2 -4 9
3 7 -11
4 -7 10
5 4 -11
6 | -17 9
7 5 -8
8 -1 12
9 5 -12
10 -7 11

In position 4 we find —7 and 10, i.e. 72 + 102 = 149.
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The Problem

A question is naturally suggested by the tricky property that
Legendre discovered when the continued fraction expansion of
v N has odd period:

What happens when the continued fraction
expansion of vV N has even period?



Torino - December , 2019

Continued Fractions

Simple continued fractions (a; > 0, ¢ > 0, a; € N) are
expressions of the form

ap + 1 ’ (3)
I

ay+———

where the a;s are called quotients. The (simple) continued
fractions may be finite or infinite. Infinite continued fraction are
periodic when a finite pattern of quotients repeats indefinitely.
Periodic continued fractions are compactly written in the form

a:[b07'"7bk)a1)a27°"aa7'—laa7'] P (4)

where the period of length 7 is over-lined, and the pre-period is
evidenced in red.
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Continued Fractions - Lagrange (1736-1813)

If N is a positive non-square integer, we have

\/N = [QOaalaCLQa s 7a27a172a0]

where the first 7 — 1 terms of the period are a palindrome.

Theorem (Nouv. Mem. Acad. R. Berlin 1769/70)

A number a € R\Q is a quadratic irrational (i.e. o = M) if
and only if its continued fraction expansion is periodic.
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Examples

Let 7 denote the period.

V91 =19,1,1,5,1,5,1,1,18 | =28
A continued fraction is said purely periodic if the pre-period is missing.
5+ 91
% =[1,1,4,2,10,2,4,1,1,1,1,3,4,1,4,3,1,1] 7=18
V89 =[9,2,3,3,2,18 | r=5
9+\/@:[2,3,3,2,18] T=5
8
5+‘/@:[1,1,4,9,4,1,1] T=7 .

8
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Galois (1811-1832)

A quadratic irrational « is said to be reduced if o > 1 and its
conjugate ' lies in the interval —1 < o/ < 0. (Steuding

p.75-78).

Theorem (Annals de Gergonne,1829)

The continued fraction expansion of a quadratic irrational
number « is purely periodic if and only if a is reduced. In this
case for the conjugate o of

a = [ag, a1, G2, - - -, 72, Gr 1]

we have

1
JZ[GT_]_,CLT_Q,...,G:L,CLO] (5)
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(cont.) A Corollary

Given p = 1 mod 4 prime, then p = Q2, + P2, Qu < Ppn.
Consider o= Q"‘Jr‘/ﬁ € Q(/p), we have a > 1 and

o = Qm €] — 1, 0[, thus by the theorem of Galois the
contmued fraction expansion of « is purely periodic
Since ava’ = —1, the period turns out to be palindromic.

Example. Consider N = 89 = 52 4 82, we have

V89 = [[9],[2,3,3,2,18]]

5489

- 1
= [1,1,4,9, 41,1 « ——
S [ ] o
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The continued fraction of v N

Let VN = [ag, a1, az, .- -, Gr_1, G7), the m-convergent is the
fraction obtained considering only the first m terms.
The sequence of convergents is

pPo_ p1_aatl P %P1t pie

© 1 ¢ ar ¢ ajg1tgie]

Two sequences A = {A;}32, and £ = {Q;}32, are defined as

Aj=pj—Nq;

U =pipin = NaGG-1 5y

02— AjAj =N

Ay =(=1)
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(cont.)

@ Let ¢, and 7, be the elements of two sequences of positive
integers defined by the relation

VN +¢, o Tt
Yyt TR o
Tn nr \/N + Cn41
with ¢y = L\/NJ, and rp = N — ag; the elements of the

sequence ai,as,...,dy ... are thus obtained as the integer
parts of the left-side fraction

s = VMLJ _ Y’O“’IJ . (6)

Tn Tn
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(cont.)

@ Let ap = [V N], the sequences {c, }n>0 and {7, }n>0 are
produced by the recursions

_ +c
Um41 = LGOTmmJ
Cm+1 = Om+1Tm — Cm (7)
N—c? 1
Tm4l = 7”:”

These recursive equations allow us to compute the sequence
{@m}m>1 using only rational arithmetical operations

Cmt1 = || 5 T = |Ap| .
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(cont.) Periodic sequences

Theorem
Let N € Z be square-free, then:

The sequence A = {A1,Ag, -+ ,Ar_1,Ar, -} is periodic with
period T, or 27 if T is odd. The first T — 3 terms of a period
satisfy the condition of symmetry Ay, = (=1)"Ar_p—2.

The sequence & = {Qq,Qa, -+, Qr_1,Q7, -+ } is periodic with
period T, or 27 if T is odd. The first T — 2 terms of a period
satisfy the condition of symmetry Qp, = —(—1)"Qr_1_p,.
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(cont.)

Theorem

The quadratic forms
fn(X,Y) = A X? + 20, XY + A 1Y & [An, 200, A 1]
have discriminant 4N .

In every period (of length T or 27 ) the correspondence m < f,,
18 one-to-one.
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Example

7 =10 even

V543 = [[23],[3, 3,3, 1,14, 1, 3, 3, 3,46
A [13,—11,34,—3,34, —11,13,—14, 1, —14]
Q [~19,20, 13,21, —21,13, —20, 19, —23, 23]

In position 4 of the period of A we find —3, a factor of 543

7 =11 odd
V6437 = [[80],[4,3,39,1,4,4,1,39,3,4,160]]
A [49, —4,127,—-31, 31,—127,4,—49,37,—1,37]
Q [—68,79, —77,50, —74,50, 77,79, —68, 80, —80]

In position 5 of the period we find 312 + (—74)2 = 6437
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7 odd (a proof of Legendre’s yheorem)

Set m = 77_1, then 7 —m —2 = % The symmetry in every
period of the sequence A implies A-—3 = —A-_1, thus the
2 2
computation of the discriminant of the quadratic form fr—1 lets
2

us to conclude
p=A%+ Q% (8)
2 2

What is the complexity for computing A, 1 and 2,1 7
2 2
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Main theorem (I)

Theorem

Let N be an odd square-free composite integer such that the
continued fraction for v/ N has even period, then

Q The fundamental unit u ( or w? ) in Q(v/N) factors 2N,

@ One of the factors of 2N can be found in the positions
77—2 + 47, 7=0,1,... of the infinite periodic sequence A.

4
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Outline of the proof

Consider the j-convergent %, and define the column vector
J

[A;, B;]T. Since A;_1 + B;_1V/N is a unit in Q(v/N), the

matrix

_ _AT—l NB; 4
MT?l B |: _B’rfl A’rfl ’
is involutory, and has characteristic polynomial Z2 — 1, i.e.
eigenvalues £1, since the trace is 0 and the determinant
—A2 |+ NB2_ ;= (-1)""1is —1.

With a rather long argument, it can be proved that

s eelg] o
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proof  (cont.)

When1—-/0—-2=1/ie. £ = %, we have two possibilities
depending whether ¢ is even or odd

AT,g,g = Ag =A e B.,-,Z,Q = Bg =B even /
AT,g,g = —Ag =—A and BT,g,Q = —Bg =—-B odd ¢

Therefore [A, B]” turns out to be an eigenvector of the matrix
=2

M,_1 with eigenvalue (—1) 7=z .
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proof  (cont.)

Thus, we have that any eigenvector of the matrix M,_1 is a
T—2
scalar multiple of 2[A, 1 — (=1)"2 , B;_1], where
T—2

d=ged{A-—1 — (—=1)"2 , Br_1}. Since ged{A4, B} = 1, from the
identification [A, B] = 1[4, 4 — (—1)%2,3771], it follows that

thus, from the chain of equalities

T—2
42 o (=) A4 +1
ATsz =A - NB* =2 2 -

it follows that 2% divides 2N, that is A-—2 is a divisor of 2V.
2
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Example

Consider N =3-5-7-11-19 = 21945; the period of the
continued fraction of /21945 is found to be 10,

J | A £
0 41 148
1 64 -139
2 -129 117
3 16 -141
4 -21 147
5 16 -147
6 -129 141
7 64 -117
8 -41 139
9 1 -148
10 -41 148

[11] 64 [ -139

T—

\

In position j = T2 =4 we find —21, a factor of N.
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Open problem

A-_» is a divisor of 2N, but depending on the factors of N, it
2
may be equal 2, a trivial factor.

Find the conditions on N for having A%z #+ 2.

When N = p ¢ is the product of two prime numbers, the
conditions are known.
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Main theorem  (II)

Theorem

Let N be a product of two primes p,q congruent 3 modulo 4,
then period T is even and

Ar o = (%)p with p < q

What is the complexity for computing A, 2 ?

2
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Factorizability of N = pq

pmod8 | gmod8 | Split? (p|q) AL o1 T mod 4
3 3 Yes =1 | —=(@lgp | 1+(p]q)
3 7 Yes 1| =(plap | 1+(p|a)
7 3 Yes 1 | —(lgp | 1+(p|q)
7 7 Yes 1 | —(plodp | 1+(plq)
5 3 Yes 1 p 0
3 5 Yes 1 —p 2
5 3 Yes -1 2p 0
3 5 Yes -1 —2p 2
5 7 Yes 1 p 0
7 5 Yes 1 —p 2
5 7 Yes -1 —2p 2
7 5 Yes -1 2p 0
1 3 No -1 —2 2
1 3 Yes 1 P AND 0
1 3 No/Yes 1 —2,—-2p 2
3 1 No -1 2
3 1 Yes 1 2p AND 0
3 1 No/Yes 1 —-2,—p 2

Table : p < gq
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Factorizability of N = pq

711 No -1 2 0
711 No 1 2 AND 0
711 Yes 1| —p,—2p 2

1 7 No -1 2 0

1| 7 | No/Yes 1 2,p,2p 0
51 No -1 1,3
501 No 1 AND 1,3
5|1 Yes 1 —p AND 2
5|1 Yes 1 p AND 0
1]5 No 1 1,3
15 No 1 AND 1,3
115 Yes 1 —p AND 2
1|5 Yes 1 p AND 0
515 No -1 1,3
5|5 No 1 AND 1,3
5|5 Yes 1 —p AND 2
515 Yes 1 P AND 0
1|1 No -1 1,3
111 No 1 AND 1,3
1|1 Yes 1 —p AND 2
1|1 Yes 1 P AND 0
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The computational problem

Assuming that

i) a factor of N is in position TT_Q + j7, for some j,

ii) 7 is unknown

the problem is:

How to get an unknown position %—2 + j7 in the infinite
sequence

A=ALAs . Ay ?

A way is offered by the

a) Shanks’s infrastructural algorithm

(based on quadratic forms) that allows us to move quickly
through the sequence A with big and little jumps

b) Adopting as stopping rule the condition

A; divides N
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Quadratic forms

A binary quadratic form f(z,y) = ax? + 2bzy + cy? is identified
by the triplet of coefficients

[a, 2b, c]

Definition

A real quadratic form [a,2b, c| of discriminant 4N is said to be

reduced if b is the integer (unique in absolute value) such that
VN — |b| < k < VN, where x = min{|al, |c|}.

We are interested in the class of reduced principal forms of
discriminant 4N: when a quadratic form is not reduced it can be
reduced by an algorithm of Gauss’.

Reduction is a linear transformation on the variable x and v,
that does not change the class of a quadratic form.
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Gauss reduction

Algorithm basic principle ( p. 75-76, G.B. Mathews, Theory of
Numbers, Chelsea )

Suppose that [a,2b,c] is a primitive quadratic form which is not
reduced and has discriminant 4N, with |a] > |c|.
A reduction function p is defined as

p(la,2b,c]) = [¢,2(b + ca),a + 2ba + ca?]
where « is an integer selected to satisfy the inequality
[\/N] —lef <b+ca< L\/NJ

If
la + 2ba + ca?| < |c| .

the application of p is iterated.
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Shanks’ Infrastructure within a class

Let N be a non-square integer, and [ag, a1, az, .- ., ar—1, Gr] be
the continued fraction expansion of vV N having even period.

Let o denote the positive fundamental unit of K = Q(v/N).
The natural logarithm Rg = In ¢ is called requlator of K.
Consider the infinite sequence Y of reduced quadratic forms

£,(X,Y) = A X2 420, XY +A,, 1Y2 & [An, 200, A1), m=1,2,...,

with Ag = Q% — N and Qp = Q..

Every quadratic form in Y has discriminant 4N.
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Infrastructure - Giant step (cont.)

Theorem

The correspondence m < f,,(x,y) for 1 + 41 <m < 7+ (T,
£=0,1,..., is one-to-one, that is, in a period all quadratic
forms £, (x,y) are distinct.

Between pairs of elements in Y it is possible to define an
operation, denoted with ”e”, for which Y is closed:

Let £, £, € T be two quadratic forms, the operation f,, e f,, is
defined as the Gauss’s composition of two forms followed by the
reduction to the closest quadratic form in X (that is, the
reduction p is applied the minimum number of times).
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Infrastructure (cont.)

Definition (Gauss composition)

The composition f3 = f1 0 fa of two forms f1 = [a1,2b1,c1] and
fa = [az, 2by, c2], having the same discriminant, is defined to be

by + —(vn — wea),

alan 2a2 b% — N
d2 ’ d as ’

f3= [do

where:
n = by — by, d = ged{ay,az,by + b2}, dop = ged{d, c1,c2,n}, and
v, w are obtained using the extended Euclidean algorithm to
satisfy the condition

d = uay + vas + w(b1 = bg).
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Infrastructure (cont.)

It is possible to introduce a metric, compatible with the
composition e by defining a distance between two contiguous
quadratic forms in the sequence Y

1 YN+ (=D)"0

(fmvfm-i-l) \/N— (_1)QO

2

The distance between two quadratic forms f,,(z,y) and f,(x,y),
with m > n, is defined to be the sum

m—1
fﬂ'wf Zd ]+17 . (10)
j=n
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Infrastructure (cont.)

Assuming fy = f,, it is possible to prove that

d(fo, fr) =Iney (or 31lnep)

where ¢q is the fundamental unit of K.

Shanks observed that, for the composition e of quadratic forms,
with a good approximation we have

d(an fm® fn) ~ d(an fm) + d(f(), fn)

The approximation error is of polynomial order O((In N)*)
(Schoof).
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Infrastructure - Baby step (cont.)

It is also possible to move forward or backward from a
quadratic form f,, = [A,, 2Q,,, A,—1] to the contiguous forms
fn41 or f,,_1 respectively:

Moving forward

b — N
foin = 0" (£) = |

Am b 2b17 A'rn/:| )

where b; is computed as 2b; = [2€,,, mod (2A,,)] + 2kA,,, with
k chosen in such a way that —|A,,| < by < |Ap].
Moving backward

_ b — N
fcs = ((60) = | A2, ]
m—1
where b; is computed as 2b; = [—29Q,, mod (2A,,-1)] + 2kA,—1
with & chosen in such a way that —|A,,—1| < b1 < |A—1].
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Remark

@ The sign of A,,_1 is the same of €,,, which is opposite to
that of A,,, thus in the sequence T the two triples of signs
(=, +,+) and (+, —, —) alternate.

@ The distance of f,,(z,y) from the beginning of Y is defined
by referring to a hypothetical quadratic form fy(z,y)
properly defined, i.e.
fo(z,y) = £ (2,y) = Aoz? + 2v/N + Agxy + 2, which is
located before f)(z,y), that is

m—1
d(fn, fo) = Zd i1, £) ifm <7, (11)
7=0

and by d(fma fO) = d(fm mod T fO) + kRp if
kr<m< (k+1)r.
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Remark

@ Shanks observed that, within the first period, the
composition law ”e” induces a structure similar to a cyclic
group for the addition of distances modulo the regulator,

(or three times the regulator).

© Between the elements of Y the distance is nearly
maintained by the giant-steps, and is rigorously maintained
by the baby-steps.

The distance d(f:,fy) is exactly equal to Inc,_q, i.e. this
distance d(f;,fy) is either the regulator Rx or 3Rk.
The distance d(fz,fo) is ezactly equal to $Inc,q,
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Example of giant and baby steps

1.
— ot — |
fmr1=p (fm) <~ Admy1 = dp + D) n\/—

am an
A, A,
fm fn
dm dn
Jm® fn= f[(m,n)
am—1
Am—l
fmfl
dm—l

Ag(m,n) ar
Aé(m,n) A
fé(m,n) Ir
dy + dy In(cr_1)

dé(m,n) R dy + dp

Am+1

Am—l—l

fm+1

dm+1
N+ (-1)™Q,,
N — (—1)™Q,
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Factoring

Let N be a composite non-square integer, and let N’ be the
product of all primes in IN. Assume that the continued fraction
of v/ N’ has even period.

Let hx be the class number of K = Q(v/N’) with fundamental
positive unit €g, and regulator Rg = In €.

Since ¢,_1 is either equal to the positive fundamental unit of K
or equal to its cube, the regulator of Ok is either Rx = Inc¢,_1 ,
or Rg = %ln Cr1.

Theorem

If the fundamental unit u (or u®) of K splits N, the
computational complexity for obtaining a non-trivial factor is

not greater than the complexity for computing the product
hk Rk -
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Dirichlet

A celebrated Dirichlet’s formula establishes the equality

VN
hk Rg = TL(LXN)

where

@ Y is a Kronecker character that, in this case, is given by the
Jacobi symbol <N>
e L(1,xn) is a L-function of Dirichlet defined by the series

> (4);

n=1
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A conditional theorem

Dirichlet’s result lets us to formulate a conditional theorem

Theorem

The factoring complezity of a composite N which is split by the
unit ¢,—1 (in particular N = pq, with p = q¢ = 3 mod 4) is not
greater than the complexity for evaluating the series

w2

with an approzimation of the order O((In N)%), a > 0.
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L(17 XN)

The direct computation of L(1, xx) is impractical when N is
large. Using the functional equation, the following expression
was derived

L = 3 () (Gereey )+ 5 0))

where erfc(x) is the error complementary function computable
as ([Abramowitz, p.297-299])

n 2n+1

erfe(z \f/ edt =1 — erf(z) = \fz n'2n+1)

e Ei(x) is the integral exponential function computable as

00 ,—tz x n,n
El(z):/l ; dt:—’y—ln(z)—ZL

n-n!
n=1
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Conclusions

@ The factorization of an integer N can be obtained from the
continued fraction expansion of v N, when the period is
even.

@ If the product hg Rk is computable with a good
approximation, i.e. O((InN)"), then it is possible to
factorize with the same complexity.

© These properties have a significant impact in
Number theory and Cryptography .
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