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Block cipher

Parameters

block size n ≤ key size κ

Spaces

I V
def
= (F2)n the message space

I K ≈ (F2)κ the key space
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Block ciphers

Block cipher
A block cipher C is a set of (bijective) encryption functions.

{εk}k∈K ⊆ Sym(V ).

Most block ciphers are iterated block ciphers, where εk = εk1 · · · εkr , with
ki ∈ V , is the composition of many key-dependent permutations, known
as round functions.
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Key-schedule

Once the key k ∈ K to be used has been chosen for the encryption, the
encryption function is obtained by composing the r round functions induced
by the corresponding round keys, which are derived by a key-schedule.

The key-schedule is a public function

KS : K → V r

such that KS(k)
def
= (k1, . . . , kr ) for any k ∈ K, where KS(k)i

def
= ki is the

i-th round key derived from the user-provided key k.
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Iterated Block Cipher: Substitution Permutation Network

Let V = V1 ⊕V2 ⊕ . . .⊕Vb where each Vj is an s-dimensional brick. For
each k ∈ V , the classical SPN round function induced by k is a map
εk : V → V where εk = γλσk and

I γ ∈ Sym(V ) is a non-linear
transformation, called parallel
S-Box, which acts in parallel
way by γ′ ∈ Sym(Vj), for each
Vj

I λ ∈ GL(V ), called diffusion
layer

I σk : V → V , x 7→ x + k
represents the key addition,
where + is the usual bitwise
XOR on F2
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Iterated Block Cipher: Feistel Network

i-th Round Encryption

Li+1 = Ri

Ri+1 = Li ⊕ S(Ri , ki )

i-th Round Decryption

Ri = Li+1

Li = Ri+1 ⊕ S(Li+1, ki )

The Feistel-function S may have the structure of an SPN-round εki .
The invertibility of the whole Feistel round transformation does not

depend on the invertibility of S.
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Iterated Block Cipher: Lai-Massey Scheme

i-th Round Encryption

(x , y)εi,K =(
(x + (x + y)ρ+ ki )π, y + (x + y)ρ+ ki

)

x y

ρσki

π

(x + (x + y)ρ + ki)π y + (x + y)ρ + ki

As in the Feistel Network case, it is possible to prove that the inverse
εi,K

−1 of the round function εi,K of a Lai-Massey cipher does not involve
the inverse of ρ
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Security parameters for block ciphers

Non-linearity
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Security parameters for block ciphers

Non-linearity for vectorial Boolean functions (vBf)

Let f ∈ Sym ((F2)s) and let u ∈ (F2)s \ {0}. Let us define

xf̂u = xf + (x + u)f .

Given v ∈ (F2)s we define

δ(f )u,v
def
= |{x ∈ (F2)s | xf̂u = v}|

The differential uniformity of f is

δ(f )
def
= max

u,v∈(F2)s ,u 6=0
δ(f )u,v ,

and f is said δ-differentially uniform if δ(f ) = δ.

Notice that δ-differentially uniform functions with small δ are “farther”
from being linear compared to functions with a larger differential uniformity
value (when f is linear, then δ = 2s).
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Security parameters for block ciphers

Some security (non-linearity) notions for vBfs

I f ∈ Sym ((F2)s) is strongly l-anti-invariant, with 0 ≤ l ≤ s − 1, if,
for any two subspaces U and W of (F2)s such that Uf = W , then
either codim(U) = codim(W ) > l or U = W = (F2)s .

I f ∈ Sym ((F2)s) is anti-crooked (AC, for short) if, for any
u ∈ (F2)s \ {0}, Im(f̂u) is not an affine subspace of (F2)s .
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Security parameters for block cipher

Security notions for the linear component of a block cipher

I λ ∈ GL(V ) is a proper diffusion layer if no direct sum of bricks
properly contained in V (called wall) is λ-invariant.

I λ is a strongly proper diffusion layer if there are no walls W and W ′

such that Wλ = W ′.

The previous properties are standard requests for the linear component of
a block cipher to spread the input bits as much as possible within the
ciphertext.
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Group Theoretical Security for Block Ciphers
Weaknesses based on group theoretical properties
Let C be an r -round iterated block cipher on V .
We define (Coppersmith and Grossman 1975) the group generated by the
encryption functions of C

Γ(C)
def
= 〈εk ∈ Sym(V ) | k ∈ K〉 ≤ Sym(V ).

This group can reveal dangerous weaknesses of the cipher
which could be exploited to recover from a ciphertext the corresponding
message or the encryption key:

I the group is too small (Kaliski, Rivest and Sherman, 1988)

I the group is of affine type (Calderini, Civino and Sala, 2020)

I the group acts imprimitively on the message space (Paterson, 1999;
Leander, Minaud, and Ronjom, 2015)

TO AVOID THESE WEAKNESSES

THE BEST IS WHEN Γ(C) EQUALS Alt(V ) OR Sym(V )
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Primitive groups

Let G be a finite group.

I A partition B of V is said to be G -invariant if Bg ∈ B, for every
B ∈ B and g ∈ G .

I A partition B is trivial if B = {V } or B = {{v} | v ∈ V }.
I We will say that G is imprimitive in its action on V if it admits a

non-trivial G -invariant partition of V . Otherwise it is called
primitive.
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Imprimitive attack

Let C be an r-round iterated block cipher.
Suppose that Γ(C) is imprimitive, then there exists a non-trivial Γ(C)-
invariant partition B of V , or in other words, for any encryption function
εk ∈ Γ(C), we have Bεk ∈ B for all B ∈ B.
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Imprimitive attack

Preprocessing performed ones per key:
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Imprimitive attack

Real-time processing:
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Group Theoretical Security for Block Ciphers

Notice that the study of Γ(C) is a hard task in general, since the dependence
on the key-schedule is not easily turned into algebraic conditions.

In literature there are only partial results for block ciphers with very par-
ticular types of key schedules (Calderini, 2018; –, Calderini and Civino,
2020)

We have much more results in the case when we consider a group contain-
ing Γ(C), the so-called group generated by the round functions of C

Γ∞(C)
def
= 〈εi,K ∈ Sym(V ) | K ∈ K, i = 1, . . . , r〉.

WHEN IS Γ∞(C) PRIMITIVE?

WHEN IS Γ∞(C) THE ALTERNATING GROUP?

Riccardo Aragona CrypTO Conference 2021 27/5/2021 15 / 29



Group Theoretical Security for Block Ciphers

Notice that the study of Γ(C) is a hard task in general, since the dependence
on the key-schedule is not easily turned into algebraic conditions.

In literature there are only partial results for block ciphers with very par-
ticular types of key schedules (Calderini, 2018; –, Calderini and Civino,
2020)

We have much more results in the case when we consider a group contain-
ing Γ(C), the so-called group generated by the round functions of C

Γ∞(C)
def
= 〈εi,K ∈ Sym(V ) | K ∈ K, i = 1, . . . , r〉.

WHEN IS Γ∞(C) PRIMITIVE?

WHEN IS Γ∞(C) THE ALTERNATING GROUP?

Riccardo Aragona CrypTO Conference 2021 27/5/2021 15 / 29



Group Theoretical Security for Block Ciphers

Notice that the study of Γ(C) is a hard task in general, since the dependence
on the key-schedule is not easily turned into algebraic conditions.

In literature there are only partial results for block ciphers with very par-
ticular types of key schedules (Calderini, 2018; –, Calderini and Civino,
2020)

We have much more results in the case when we consider a group contain-
ing Γ(C), the so-called group generated by the round functions of C

Γ∞(C)
def
= 〈εi,K ∈ Sym(V ) | K ∈ K, i = 1, . . . , r〉.

WHEN IS Γ∞(C) PRIMITIVE?

WHEN IS Γ∞(C) THE ALTERNATING GROUP?

Riccardo Aragona CrypTO Conference 2021 27/5/2021 15 / 29



Group Theoretical Security for Block Ciphers

Notice that the study of Γ(C) is a hard task in general, since the dependence
on the key-schedule is not easily turned into algebraic conditions.

In literature there are only partial results for block ciphers with very par-
ticular types of key schedules (Calderini, 2018; –, Calderini and Civino,
2020)

We have much more results in the case when we consider a group contain-
ing Γ(C), the so-called group generated by the round functions of C

Γ∞(C)
def
= 〈εi,K ∈ Sym(V ) | K ∈ K, i = 1, . . . , r〉.

WHEN IS Γ∞(C) PRIMITIVE?

WHEN IS Γ∞(C) THE ALTERNATING GROUP?

Riccardo Aragona CrypTO Conference 2021 27/5/2021 15 / 29



Some Results

The groups of the following ciphers are the alternating group
(in particular primitive)

I DES (Wernsdorf, 1993)

I SERPENT (Wernsdorf, 2000)

I AES (Sparr and Wernsdorf, 2008)

I KASUMI (Sparr and Wernsdorf, 2015)

I SPNs, under some cryptographic assumptions
(Caranti, Dalla Volta and Sala for p = 2, 2009;
–, Caranti, Dalla Volta and Sala for p > 2, 2014)

I GOST-like cipher (–, Caranti and Sala, 2017)
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Group Theoretical Security for SPNs
Primitivity

Theorem (–, Calderini, Tortora and Tota, 2018)
Let C be an SPN over (F2)bs with a proper diffusion layer. Suppose that,
for some 1 < l < s, each S-Box is

(i) 2l - differentially uniform, and

(ii) strongly (l − 1)-anti-invariant.

Then Γ∞(C) is primitive.

Corollary
The group generated by the round functions of AES, SERPENT and
PRESENT are primitive (l = 2).
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The O’Nan-Scott classification

Once proved the primitivity, we exploit a special case of the O’Nan-Scott
classification of the finite primitive permutation groups to prove when
Γ∞(SPN) is the alternating group.
We denote by G = N.K an extension G of N by K .

Theorem
Let G be a primitive permutation group of degree 2d , with d ≥ 1.
Assume that G contains an elementary abelian regular subgroup T . Then
one of the following holds

(1) G is of affine type, that is, G ≤ AGL(d , 2);

(2) G ' Alt(2d) or Sym(2d);

(3) G is a wreath product, that is,

G = (S1 × . . .× Sc).O.P and T = T1 × . . .× Tc ,

where c ≥ 1 divides d, each Ti is an abelian subgroup of Si of order
2d/c with Si ' Alt(2d/c) or Sym(2d/c), the Si are all conjugate,
O ≤ Out(S1)× . . .×Out(Sc), and P permutes transitively the Si .
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Group Theoretical Security for SPNs
Translation group

Let T (V )
def
= {σk | x 7→ x + k} ≤ Sym(V ) be the translation group of V

and let ρ = γλ.

Lemma (Caranti, Dalla Volta and Sala, 2014)
Let C be an SPN over V . Then

Γ∞(C) = 〈T (V ), ρ 〉

In particular Γ∞(C) contains an elementary abelian regular subgroup
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Group Theoretical Security for SPNs
The alternating group

Lemma (–, Calderini, Tortora and Tota, 2018)
Let C be a SPN cipher over V . Then Γ∞(C) ≤ Alt(V ).

Theorem (–, Calderini, Tortora and Tota, 2018)
Let C be an SPN over V = (F2)bs such that λ is strongly proper and, for
some 1 ≤ l < s, each S-Box is AC and satisfies

(i) 2l - differentially uniform, and

(ii) strongly (l − 1)-anti-invariant.

Then Γ∞(C) is Alt(V ).

The AC condition has been introduced to avoid that Γ∞(C) is affine.
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Group Theoretical Security for SPNs
Some applications to real-life Cryptography

The S-Boxes of AES and SERPENT satisfy the hypotheses of the previous
theorem.
Hence, Γ∞(AES) and Γ∞(SERPENT) are Alt((F2)128).

Some lightweight ciphers (i.e., ciphers designed to run on devices with
very low computing power), such as PRESENT, do not satisfy the AC
condition for the S-Boxes.

Is Γ∞(PRESENT) the alternating group?
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Group Theoretical Security for SPNs
PRESENT and Lightweight SPNs

Theorem (–, Calderini, Tortora and Tota, 2018)
Let C be a SPN cipher over V = (F2)bs , with a strongly proper mixing
layer such that for 1 < l < s the corresponding S-Boxes are

(i) 2l -differentially uniform, and

(ii) strongly (l − 1)-anti-invariant.

Suppose s = 3, 4 or 5, and b ≥ 2. Then Γ∞(C) = Alt(V ).

Corollary
The round functions of PRESENT, RECTANGLE and PRINTcipher
generate the alternating group (l = 2).
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Group Theoretical Security for Feistel Networks
Round functions

Let us define an r -round Feistel Network C as a family of encryption
functions {εk | k ∈ K} ⊆ Sym(V × V ) such that for each k ∈ K
εk = ε1,kε2,k . . . εr ,k , where εi,k is the formal operator

εi,k =

(
0n 1n

1n εi,k

)

and εi,k = ρσki , with ρ ∈ Sym(V ).
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Group Theoretical Security for Feistel Networks
Group generated by the round functions

We define
Γ∞(C)

def
= 〈εi,k | k ∈ K, 1 ≤ i ≤ r〉.

Let T(0,n)
def
= {σ(0,k) : (x1, x2) 7→ (x1, x2 + k) | k ∈ V } ≤ Sym(V × V ).

Note that T(0,n)
∼= T (V ).

Lemma

Let ρ be the formal operator

(
0 1
1 ρ

)
. Then

Γ∞(C) = 〈T(0,n), ρ 〉.
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Group Theoretical Security for Feistel Networks
Security Reduction

Let εi,k = ρσki ∈ Sym(V ) and Γ
def
= 〈εi,k | k ∈ K, 1 ≤ i ≤ r〉.

Then
Γ∞(C) = 〈T(0,n), ρ 〉 and Γ = 〈T (V ), ρ 〉

Theorem (–, Calderini, Civino, Sala and Zappatore, 2019)
If ρ ∈ Sym(V ) \AGL(V ) and Γ is primitive, then Γ∞(C) is primitive.
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Group Theoretical Security for Lai-Massey Schemes
Round functions

Let us define an r -round Lai-Massey Scheme C as a family of encryption
functions {εk | k ∈ K} ⊆ Sym(V × V ) such that for each k ∈ K
εk = ε1,kε2,k . . . εr ,k , where the i-th round function εi,k is defined as

εi,k
def
= ρ πσ(kiπ,ki ),

x y

ρσki

π

(x + (x + y)ρ + ki)π y + (x + y)ρ + ki

where

I ρ denotes the formal operator

(
1 1
1 0

)(
1 1 + ρ
0 1

)
∈ Sym(V ×V );

I π denotes the formal operator

(
π 0
π 1

)
∈ GL(V × V );
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Group Theoretical Security for Lai-Massey Schemes
Group generated by the round functions

Let us coinsider an r -round generalized Lai-Massey cipher when the key
addition in the round function σ(kiπ,ki ) is replaced by the more general
σ(ki ,kj ), for (ki , kj) ∈ V × V .

Given ρ ∈ Sym(V ) \ AGL(V ) and π ∈ GL(V ), we define

Γ(GLM(ρ, π))
def
= 〈T2n, ρ, π 〉;

where

T2n
def
= {σ(k1,k2) : (x1, x2) 7→ (x1+k1, x2+k2) | (k1, k2) ∈ V×V } ≤ Sym(V×V ).
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Group Theoretical Security for Lai-Massey Schemes
Security Reduction and...

Let εi,k = ρσki ∈ Sym(V ) and Γ
def
= 〈εi,k | k ∈ K, 1 ≤ i ≤ r〉.

Then
Γ = 〈T (V ), ρ 〉.

Theorem (– and Civino, 2021)
If 〈T (V ), ρ〉 is primitive, then Γ(GLM(ρ, π)) is primitive.
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Group Theoretical Security for Lai-Massey Schemes
...“Viceversa”

Lemma (– and Civino, 2021)
If 〈T (V ), ρ, π〉 is imprimitive, then Γ(GLM(ρ, π)) is imprimitive.

Proof.
Let us assume that U ≤ V is an invariant subspace for ρ and for π.
Then, for (u1, u2) ∈ U × U,

(u1, u2)ρ = (u1, u2)

(
1 1
1 0

)(
1 1 + ρ
0 1

)
= (u1 + u2, u2 + (u1 + u2)ρ) ∈ U × U,

and analogously

(u1, u2)π = (u1, u2)

(
π 0
π 1

)
= ((u1 + u2)π, u2) ∈ U × U.

Therefore U × U ≤ V × V is an invariant subspace for ρ and π.
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Thanks for your attention!
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