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Integer Factorization Problem (IFP)

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer N greater than 1 can be represented in a unique
way as a product of prime powers:

N = pe1
1 · · · p

ek
k ,

where k ∈ N+, p1, . . . , pk prime numbers and e1, . . . , ek ∈ N.

One-way problem:

pe1
1 · · · p

ek
k

easy−−→ N

N
hard−−→ pe1

1 · · · p
ek
k
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Integer Factorization Problem (IFP)

Integer Factorization Problem (IFP)

Given a semiprime N ∈ Z, find its prime factors p and q.

Remark

We call p the smaller factor and q the bigger one.
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Public Key Encryption schemes based on

IFP
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PKE based on IFP

RSA (1976)
Rabin Cryptosystem (1979)
Goldwasser-Micali Cryptosystem (1982)
Paillier Cryptosystem (1999)
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RSA

Generation of the key

1. Generate two random prime numbers p and q and compute N = pq;
2. Generate a random invertible e ∈ Zϕ(N) and compute d such that
ed ≡ 1 mod ϕ(N);

3. (N, e) is the public key, while (p, q, d) is the private key.

Encryption

1. Consider a message m ∈ ZN ;
2. Compute and transmit c ≡ me mod N .

Decryption

1. Compute cd ≡ med ≡ m mod N .
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RSA

Security of RSA

1 Given (N, e) and c is infeasible to recover m as e
√
c mod N .

2 Given (N, e) is infeasible to recover d.

3 Given N is infeasible to recover ϕ(N).

4 Given N is infeasible to recover p and q.

3 ⇐⇒ 4

4 =⇒ 1

4 =⇒ 2

2 GRH=⇒ 4

1 ?=⇒ 4
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Rabin Cryptosystem

Generation of the key

1. Generate two random prime numbers p and q such that
p ≡ q ≡ 3 mod 4 and compute N = pq;

2. N is the public key, while (p, q) is the private key.

Encryption

1. Consider a message m ∈ ZN ;
2. Compute and transmit c ≡ m2 mod N .

Decryption

1. Solve the system {
m≡±

√
c≡±c

p+1
4 mod p

m≡±
√
c≡±c

q+1
4 mod q;

2. The original message m is one of the four solutions found.
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Rabin Cryptosystem

Security of Rabin cryptosystem

Recovering the plaintext m from the ciphertext c in the Rabin
cryptosystem is as hard as finding a factorization for N .
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Goldwasser-Micali Cryptosystem

Generation of the key

1. Generate two random prime numbers p and q and compute N = pq;

2. Generate x ∈ ZN such that
(
x

p

)
=
(
x

q

)
= −1;

3. (N, x) is the public key, while (p, q) is the private key.

Encryption

1. Consider a message m = (m1, . . . ,mk) ∈ (Z2)k;
2. Generate random yi ∈ Z∗N for 1 ≤ i ≤ k;
3. Compute ci ≡ y2

i x
mi mod N and transmit c = (c1, . . . , ck) ∈ (ZN )k.

Decryption

1. If ci is a quadratic residue then mi = 0, otherwise mi = 1.
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Goldwasser-Micali Cryptosystem

Security of Goldwasser-Micali Cryptosystem

This algorithm is based on the quadratic residuosity problem (QRP): given
(N, x) is computationally infeasible to decide whether x is a quadratic
residue or not.

IFP =⇒ QRP

QRP
?=⇒ IFP
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Paillier Cryptosystem

Generation of the key

1. Generate two random prime numbers p and q and compute N = pq
and λ = lcm(p− 1, q − 1);

2. Choose a random g ∈ Z∗N2 and compute

µ≡
(

(gλ mod N2)−1
N

)−1

mod N ;

3. (N, g) is the public key, while (p, q, λ, µ) is the private key.

Encryption

1. Consider a message m ∈ ZN ;
2. Generate a random r ∈ Z∗N and compute c ≡ gm · rN mod N2.

Decryption

1. Compute m ≡
(

(cλ mod N2)−1
N

)
· µ mod N .
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Paillier Cryptosystem

Homomorphic Properties

Paillier encryption is homomorphic:
Decrypt(Encrypt(m1) · Encrypt(m2)) ≡ m1 +m2 mod N.

Security of Paillier Cryptosystem

Paillier Cryptosystem is based on the composite residuosity problem
(CRP): given (N, x), it is computationally infeasible to decide whether
there exists y ∈ ZN2 such that x ≡ yN mod N2.

IFP =⇒ CRP

RSA =⇒ CRP

CRP
?=⇒ IFP
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Factorization Algorithms
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A naive algorithm

Suppose we want to recover p and q from N .

Brute Force Algorithm

1. For any prime s ∈ P starting from 2 check if N ≡ 0 mod s;
2. Stop when p is found, then q = N

p .

Since p < q then p ≤ b
√
Nc, meaning that we have to check, in the worst

case, π(
√
N) ∼

√
N

log
√
N
∼ O

(√
N
)
values.

Effectiveness

This method is called Trial Division. It works best when p is small.
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Factorization Methods

First-Category Algorithms

These methods return the smaller prime divisor p of N .
They are effective if p ≈ 7− 40 digits.
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Factorization Methods

First Category Algorithms

Factorization Method Execution Time

Trial Division O
(
N

1
2
)

Pollard’s p− 1 Algorithm O
(
N

1
2
)

Pollard’s ρ O
(
N

1
4
)

Shanks’ Class Group Method O
(
N

1
4
)

Lenstra’s Elliptic Curves Method (ECM) O
(
e
√

2 logN log logN
)

Table: Recap of some famous first category factorization methods for N = p · q.
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Fermat’s method

Fermat’s approach

IFP can be solved finding x, y ∈ ZN such that

x2 ≡ y2 mod N,

meaning that

N = pq|(x2−y2) = (x−y)(x+y) =⇒ p|(x−y)(x+y) and q|(x+y)(x−y).

But since p and q are primes:{
p|(x− y) ∨ p|(x+ y)
q|(x− y) ∨ q|(x+ y)
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Fermat’s method

The possible cases are the following:

p | (x− y) p | (x+ y) q | (x− y) q | (x+ y) gcd(x− y,N) gcd(x+ y,N) Factorization
3 3 3 3 N N 7

3 3 3 7 N p 3

3 3 7 3 p N 3

3 7 3 3 N q 3

3 7 3 7 N 1 7

3 7 7 3 p q 3

7 3 3 7 q p 3

7 3 7 3 1 N 7

7 3 3 3 q N 3

Table: Output for x2 ≡ y2 mod N .

It is possible to recover a successful factorization in 6 cases over 9 ≈ 66%.

Adding the condition x 6≡ ±y mod N it is always possible to recover a
non-trivial factor of N .
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Factorization methods

Second-Category Algorithms

Do not take into account the distance between p and q and the
complexity only depends on the size of N .
Are effective if N has more than ≈ 100 digits and no small factors.
They are based on Fermat’s idea.
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Factorization methods

Second Category Algorithms

Factorization Method Execution Time

Lehman’s method O
(
N

1
3
)

Shanks’ Square Forms Factorization (SQUFOF) O
(
N

1
4
)

Dixon’s Factorization Method O
(
e2
√

2 logN log logN
)

Continued Fractions Method (CFRAC) O
(
e
√

2 logN log logN
)

Multiple Polynomial Quadratic Sieve (MPQS) O
(
e
√

logN log logN
)

General Number Field Sieve (GNFS) O

(
e

3
√

64
9 logN(log logN)2

)
Table: Recap of some second category factorization methods for N = p · q.
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RSA Factoring Challenge (1991)

RSA-Number Binary Digits Date of Factorization Method used

RSA-100 330 1 April 1991 MPQS
RSA-110 364 14 April 1992 MPQS
RSA-120 397 9 July 1993 MPQS
RSA-129 426 26 April 1994 MPQS
RSA-130 430 10 April 1996 GNFS
RSA-140 463 2 February 1999 GNFS
RSA-150 496 16 April 2004 GNFS
RSA-155 512 22 August 1999 GNFS
RSA-160 530 1 April 2003 GNFS
RSA-170 563 29 December 2009 GNFS
RSA-576 576 3 December 2003 GNFS
RSA-180 596 8 May 2010 GNFS
RSA-190 629 8 November 2010 GNFS
RSA-640 640 2 November 2005 GNFS
RSA-200 663 9 May 2005 GNFS
RSA-210 696 26 September 2013 GNFS
RSA-704 704 2 July 2012 GNFS
RSA-220 729 13 May 2016 GNFS
RSA-230 762 15 August 2018 GNFS
RSA-232 768 17 February 2020 GNFS
RSA-768 768 12 December 2009 GNFS
RSA-240 795 2 December 2019 GNFS
RSA-250 829 28 February 2020 GNFS

Table: Known factorizations of RSA moduli.
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A pattern in successive remainders
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Successive moduli

Let m be
⌊√

N
2

⌋
≤ m ≤

⌊√
N
⌋
and let


N ≡ a0 mod m
N ≡ a1 mod (m+ 1)
N ≡ a2 mod (m+ 2),

where a0, a1, a2 are a0 ≤ a1 ≤ a2 or a0 ≥ a1 ≥ a2.
We define k := a1 − a0 and

w :=
{
a2 − 2a1 + a0 if a2 − 2a1 + a0 ≥ 0,
a2 − 2a1 + a0 +m+ 2 if a2 − 2a1 + a0 < 0.
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Successive moduli

Proposition

Let N be such that N ≥ 50 and let m ∈ N+ with
⌊√

N
2

⌋
≤ m ≤

⌊√
N
⌋
,

then

w =


2,
4,
6.

Corollary

If there exists a value for m such that
⌊√

N
2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
− 1, then

w = 4.
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Successive moduli

Example

N = 925363 and m = 680:

N ≡ a0 = 563 modm
N ≡ a1 = 565

= a0 + k = 563 + 2

mod(m+ 1)
N ≡ a2 = 571

= a1 + k + w = 565 + 2 + 4

mod(m+ 2)
N ≡ 581

= 571 + 2 + 2 · 4

mod(m+ 3)
N ≡ 595

= 581 + 2 + 3 · 4

mod(m+ 4)
N ≡ 613

= 595 + 2 + 4 · 4

mod(m+ 5)
N ≡ 635

= 613 + 2 + 5 · 4

mod(m+ 6)
N ≡ 661

= 635 + 2 + 6 · 4

mod(m+ 7)
N ≡ 3

= 661 + 2 + 7 · 4 = 691

mod(m+ 8)
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A formula for successive moduli

Proposition

Let N ≥ 50 and such that
⌊√

N
2

⌋
≤ m ≤

⌊√
N
⌋
, then for every i ∈ N,

N ≡
(
a0 + ik + w · i(i− 1)

2

)
mod (m+ i).

Corollary

If
⌊√

N
2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
− 1, then for every i ∈ N,

N ≡
(
a0 + ik + 2i2 − 2i

)
mod (m+ i).
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Interpolating polynomial

Consider the polynomial f ∈ Q[x] of degree 2, such that
f(0) = a0,

f(1) = a1,

f(2) = a2.

Proposition

Let
⌊√

N
2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
− 1. Then, the interpolating polynomial

f ∈ Q(x) is such that, for every i ∈ Z,

N ≡ f(i) mod (m+ i).
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Successive moduli in factorization

In order to find a factor of N , we would like to solve the following
equation for some x ∈ Z:

a0 + ik + 2i2 − 2i = x(m+ i).

Proposition

Let N be a semiprime and m such that
⌊√

N
2

⌋
+ 1 ≤ m ≤

⌊√
N
⌋
− 1.

Then producing the factorization of N is equivalent to finding an integer
i ∈ N+ for which

N ≡
(
a0 + ik + 2i2 − 2i

)
≡ 0 mod (m+ i).
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Successive moduli in factorization

If we consider the interpolating polynomial f , then if m is close to one of
the factor of N , then the roots of f are exactly the i ∈ Z such that

f(i) ≡ 0 mod (m+ i).

However to achieve this result, we need to choose the first remainder a0 in
the monotonic descending sequence that leads to 0.

Giordano Santilli - UniTN IFP in Cryptography CrypTO - 28 May 2021 21 / 22



Successive moduli in factorization

Example

N = 925363 and m = 943, then
N ≡ 280 mod 943,
N ≡ 243 mod 944,
N ≡ 208 mod 945.

The interpolating polynomial is

f(i) = i2 − 38i+ 280,

which has two roots: i1 = 10 and i2 = 28. Therefore the two factors of N
are:

m+ i1 = 953 m+ i2 = 971.
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FOR THE ATTENTION!
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