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The prorlem of Factorization
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Intecer Factorization Proerlem (IFP)

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer N greater than 1 can be represented in a unique
way as a product of prime powers:

N :pil pzk7
where k € N, pq,.

.., Pr prime numbers and ey, ..., e € N.
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Intecer Factorization Proerlem (IFP)

Theorem (Fundamental Theorem of Arithmetic)

Every positive integer N greater than 1 can be represented in a unique
way as a product of prime powers:

_Z\]:pilpik7

where k € N*, p1,...,pi prime numbers and e1, ..., e, € N.

One-way problem:

eas

hard
Ni}pil...pzk
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Intecer Factorization Prorlem (IFP)

Intecer Factorization Proelem (IFP)
Given a semiprime N € Z, find its prime factors p and q.

We call p the smaller factor and q the bigger one. I
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Puglic Key Encryption schemes rased on

IFP
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PKE. rased on IFP

o RSA (1976)

o Rabin Cryptosystem (1979)

o Goldwasser-Micali Cryptosystem (1982)
o Paillier Cryptosystem (1999)
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Generation of the key

1. Generate two random prime numbers p and ¢ and compute N = pgq;

2. Generate a random invertible e € Z,() and compute d such that
ed =1 mod ¢p(N);

3. (N, e) is the public key, while (p, g, d) is the private key.

1. Consider a message m € Zy;

2. Compute and transmit ¢ = m® mod N.

Decryption

1. Compute ¢ = m® = m mod N.

N
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R SA
Security of RSA

@ Given (N, e) and c is infeasible to recover m as /c mod N.
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RSA

Security of RSA

@ Given (N, e) and c is infeasible to recover m as /c mod N.
@ Given (N, e) is infeasible to recover d.
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RSA

Security of RSA

@ Given (N, e) and c is infeasible to recover m as /c mod N.
@ Given (N, e) is infeasible to recover d.

@ Given N is infeasible to recover (V).
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RSA

Security of RSA

@ Given (N, e) and c is infeasible to recover m as /c mod N.
@ Given (N, e) is infeasible to recover d.

@ Given N is infeasible to recover (V).

@ Given N is infeasible to recover p and q.
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RSA

@ Given (N, e) and c is infeasible to recover m as /c mod N.
@ Given (N, e) is infeasible to recover d.

@ Given N is infeasible to recover (V).

@ Given N is infeasible to recover p and q.
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R.arin Cryptosystem

Generation of the key
1. Generate two random prime numbers p and ¢ such that
p =g =3 mod4 and compute N = pq;

2. N is the public key, while (p, ¢) is the private key.

| \

Encryption
1. Consider a message m € Zy;
2. Compute and transmit ¢ = m? mod N.

| \

Decryption
1. Solve the system
prl
{mz:l:\/EE:I:cT mod p

g+1
m=+y/c=+c 4 mod g;

2. The original message m is one of the four solutions found.

o
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R.arin Cryptosystem

Generation of the key
1. Generate two random prime numbers p and ¢ such that
p = q =3 mod 4 and compute N = pgq;

2. N is the public key, while (p, q) is the private key.

| N

Encryption
1. Consider a message m € Zy;
2. Compute and transmit ¢ = m? mod N.

| N

Decryption
1. Solve the system

p+1
m=+y/c=+c 4 modp

a+1
m=+yc=+c 4 mod g;

2. The original message m is ‘one of the four solutions‘ found.

v
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R.arin Cryptosystem

Security of RaBiN cryptosystem

Recovering the plaintext m from the ciphertext ¢ in the Rabin
cryptosystem is as hard as finding a factorization for V.
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Qoldwasser-Micali Cryptosystem

Generation of the key

1. Generate two random prime numbers p and ¢ and compute N = pgq;

2. Generate x € Zy such that <f—)) = <£> =—1;

3. (N, z) is the public key, while (p, q) is the private key.

1. Consider a message m = (my,...,my) € (Z2)";
2. Generate random y; € Zy for 1 <14 < k;

3. Compute ¢; = y2z™ mod N and transmit ¢ = (c1,...,cx) € (Zy)".

v

Decryption

1. If ¢; is a quadratic residue then m; = 0, otherwise m; = 1.
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Qoldwasser-Micali Cryptosystem

Generation of the key

1. Generate two random prime numbers p and ¢ and compute N = pgq;

2. Generate x € Zp such that <£> = <£> = —1;
b q

3. (N, z) is the public key, while (p, q) is the private key.

1. Consider a message m = (my,...,my) € (Z3)¥;

2. Generate yi € Ly for 1 <i < k;

3. Compute ¢; = y22™ mod N and transmit ¢ = (cy,...,cx) € (Zn)".

V.

Decryption
1. If ¢; is a quadratic residue then m; = 0, otherwise m; = 1.
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Qoldwasser-Micali Cryptosystem

Security of Goldwasser-Micali Cryptosystem

This algorithm is based on the quadratic residuosity problem (QRP): given

(N, z) is computationally infeasible to decide whether x is a quadratic
residue or not.
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Qoldwasser-Micali Cryptosystem

Security of Goldwasser-Micali Cryptosystem

This algorithm is based on the quadratic residuosity problem (QRP): given

(N, z) is computationally infeasible to decide whether x is a quadratic
residue or not.

IFP — QRP
?
QRP == IFP
IEP in Cryptoarsphy
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Palllier Cryptosystem

Generation of the key

1. Generate two random prime numbers p and ¢ and compute N = pq
and A =lem(p — 1,9 — 1);

2. Choose a random g € Z},, and compute
((g)‘ mod N2)1> -t
p= —x—"— mod N;
3. (N, g) is the public key, while (p, g, A, 1) is the private key.

Encryption
1. Consider a message m € Zn;

|

2. Generate a random r € Z} and compute ¢ = g™ - rV mod N2.

Decryption

|

A 2\ _
1. Compute m = (QLNN)I> - mod N.

o
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Palllier Cryptosystem

Homomorphic Properties
Paillier encryption is homomorphic:

Decrypt(Encrypt(my) - Encrypt(mz)) = mi + mg mod N.
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Palllier Cryptosystem

Homomorphic Properties

Paillier encryption is homomorphic:

Decrypt(Encrypt(my) - Encrypt(mz)) = mi + mg mod N.

v

Security of Paillier Cryptosystem

Paillier Cryptosystem is based on the composite residuosity problem

(CRP): given (N, x), it is computationally infeasible to decide whether
there exists y € Zy2 such that z = ¥ mod N2.
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Palllier Cryptosystem

Homomorphic Properties

Paillier encryption is homomorphic:

Decrypt(Encrypt(my) - Encrypt(mz)) = mi + mg mod N.

v

Security of Paillier Cryptosystem

Paillier Cryptosystem is based on the composite residuosity problem

(CRP): given (N, x), it is computationally infeasible to decide whether
there exists y € Zy2 such that z = ¥ mod N2.

IFP — CRP
R.SA — CRP
CRP =% IFP
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Factorization Algorithms
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A naive algorithm

Suppose we want to recover p and ¢ from N.

Brute Force Algorithm
1. For any prime s € PP starting from 2 check if N = 0 mod s;

2. Stop when p is found, then ¢ = %.
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A naive algorithm

Suppose we want to recover p and ¢ from N.

Brute Force Algorithm
1. For any prime s € PP starting from 2 check if N = 0 mod s;

2. Stop when p is found, then ¢ = %.

Since p < ¢ then p < |V/N|, meaning that we have to check, in the worst
~Y W ~Y
case, m(v/N) eV O (\/N) values.
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A naive algorithm

Suppose we want to recover p and ¢ from N.

Brute Force Algorithm
1. For any prime s € P starting from 2 check if N = 0 mod s;

2. Stop when p is found, then ¢ = %.

Since p < ¢ then p < |V/N|, meaning that we have to check, in the worst

case, m(vV/N) ~ 10% ~ O (\/N) values.

Effectiveness
This method is called Trial Division. It works best when p is small.
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Factorization Methods

First-Cateaory Algorithms
@ These methods return the smaller prime divisor p of V.

@ They are effective if p = 7 — 40 digits.
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Factorization Methods

Factorization Method Execution Time
Trial Division O (N7)
Pollard’'s p — 1 Algorithm (N %)
Pollard’s p (N%)
)

Shanks’ Class Group Method ( Ni

Lenstra’s Elliptic Curves Method (ECM) | O (ev21°gN loglog N )

Table: Recap of some famous first category factorization methods for N = p - q.
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Fermat’'s method

Fermat’s approach
IFP can be solved finding x,y € Zy such that

22 = y? mod N,
meaning that

N =pgl(z®—y*) = (x—y)(z+y) = pl(z—y)(z+y) and q|(z+y)(z—y).

But since p and ¢ are primes:

{pl(:C —y)Vpllz+y)
ql(x —y) Val(z+y)
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Fermat’'s method

The possible cases are the following:

plx—vy)|pl@+y) |ql(@—y)|q]|(x+y) || ged(z —y,N) | ged(xz +y, N) || Factorization
v v v N N X
v v v N » v
v v X p N v
v x v N q v
v X v N 1 X
v X X p q v
X v v q P v
X v X 1 N X
X v v q N v

Table: Output for 22 = y2 mod N.

It is possible to recover a successful factorization in 6 cases over 9 ~ 66%.
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Fermat’'s method

The possible cases are the following:

pl@—y) [pllz+ty) |allz—y) || (@+y) || ged(z —y,N) | ged(z +y, N) || Factorization
N N
N p
p N
N q
N 1
P q
q j2
1 N
q N

Table: Output for 22 = y2 mod N.

It is possible to recover a successful factorization in 6 cases over 9 ~ 66%.
Adding the condition x # £y mod N it is always possible to recover a
non-trivial factor of N.
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Factorization methods

Second-Catecory Algorithms
@ Do not take into account the distance between p and ¢ and the
complexity only depends on the size of N.
@ Are effective if N has more than = 100 digits and no small factors.

@ They are based on Fermat's idea.
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Factorization methods

Second Cateaory Algorithms

Factorization Method Execution Time
Lehman’s method 0 ( N %)
Shanks’ Sauare Forms Factorization (SQUFOR) o} (N %)
Dixon's Factorization Method 0 (eQW )
Convtinued Fractions Method (CFRACY O (VPN ToETEN)
Muttiple Polynomial Quadratic Sieve (MPRS) O (evIoENToETEN)
General Numeer Field Sieve (GNFS) o (e VW)

Table: Recap of some second category factorization methods for N = p - q.
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R_SA Factorina Challenge (199D

RSA-100 330 1 April 1991 MPQS
RSA-110 364 14 April 1992 MPQS
RSA-120 397 9 July 1993 MPQS
RSA-129 426 26 April 1994 MPQS
RSA-130 430 10 April 1996 GNFS
RSA-140 463 2 February 1999 GNFS
RSA-150 496 16 April 2004 GNFS
RSA-155 512 22 August 1999 GNFS
RSA-160 530 1 April 2003 GNFS
RSA-170 563 29 December 2009 GNFS
RSA-576 576 3 December 2003 GNFS
RSA-180 596 8 May 2010 GNFS
RSA-190 629 8 November 2010 GNFS
RSA-640 640 2 November 2005 GNFS
RSA-200 663 9 May 2005 GNFS
RSA-210 696 26 September 2013 GNFS
RSA-704 704 2 July 2012 GNFS
RSA-220 729 13 May 2016 GNFS
RSA-230 762 15 August 2018 GNFS
RSA-232 768 17 February 2020 GNFS
RSA-768 768 12 December 2009 GNFS
RSA-240 795 2 December 2019 GNFS
RSA-250 829 28 February 2020 GNFS

Table: Known factorizations of RSA moduli.
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A pattern in sucecessive remainders

pre X
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Successive moduli

Let m be b/gJ <m< {\/NJ and let

N = ag mod m
N = a; mod (m + 1)
N = az mod (m + 2),

where ag, a1, ag are ag < a1 < ag or ag > ai > as.
We define k£ := a1 — ag and

as — 2a1 + ag if ao —2a1 +ag > 0,
w =
as —2a1 +ag+m+2 ifay—2a;1 +ag <O0.
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Successive moduli

Let N be such that N > 50 and let m € Nt with {@J <m< {\/NJ
then

S
|
o N

Corollary

If there exists a value for m such that {@J +1<m< {\/NJ — 1, then

w = 4.

| \

v
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Successive moduli

Example

N = 925363 and m = 680:
N = ag = 563 mod m
N =ay =565 mod(m + 1)
N =ay =571 mod (m + 2)
N =581 mod (m + 3)
N =595 mod (m + 4)
N =613 mod (m + 5)
N =635 mod (m + 6)
N =661 mod(m + 7)
N =3 mod (m + 8)

Giordano Santilli - UniTN IFP in Cryptoaraphy CrypTO - 2.8 May 2021



Successive moduli

Example

N = 925363 and m = 680:

N = ag = 563 mod m
N =a1 =56b=ag+ k=563 +2 mod (m + 1)
N=ay=5Tl=a; +k+w=>565+2+4 mod (m + 2)
N =581=571+2+2-4 mod (m + 3)
N =595=581+2+3-4 mod (m + 4)
N=613=595+2+4-4 mod (m + 5)
N =635=613+2+5-4 mod (m + 6)
N =661=635+2+6-4 mod (m + 7)
N=3=661+2+7 4=691 mod (m + 8)
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A formula for successive moduli

Proposition

Let N > 50 and such that {@J <m< {\/NJ then for every i € N,

N = <ao+ik+w-z(z2_1)) mod (m + ).

If b/gJ +1<m< {\/NJ — 1, then for every i € N,

N = (ag+ ik + 2i* = 2i) mod (m + ).
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Interpolating polynomial

Consider the polynomial f € Q[x] of degree 2, such that

f(0) = ao,
f(l) = ay,
f(2) = as.

Proposition

Let b/gJ +1<m< {\/NJ — 1. Then, the interpolating polynomial
f € Q(z) is such that, for every i € Z,

N = f(i) mod (m + i).
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Suceessive moduli in factorization

In order to find a factor of IV, we would like to solve the following
equation for some x € Z:

ap + ik + 2i% — 2i = x(m + ).
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Suceessive moduli in factorization

In order to find a factor of IV, we would like to solve the following
equation for some = € Z:

ap + ik + 2i% — 2i = x(m + ).

Let N be a semiprime and m such that {@J +1<m< [\/NJ —1.

Then producing the factorization of N is equivalent to finding an integer
i € Nt for which

N = (ag + ik + 2i% - 2i) = 0 mod (m + ).
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Suceessive moduli in factorization

If we consider the interpolating polynomial f, then if m is close to one of
the factor of N, then the roots of f are exactly the ¢ € Z such that

f(i) =0 mod (m +1).

However to achieve this result, we need to choose the first remainder ag in
the monotonic descending sequence that leads to 0.
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Suceessive moduli in factorization

N = 925363 and m = 943, then

N = 280 mod 943,
N = 243 mod 944,
N = 208 mod 945.

The interpolating polynomial is
f(i) =% — 38i 4 280,

which has two roots: 71 = 10 and i9 = 28. Therefore the two factors of IV
are:
m—+ i1 = 953 m+ iy = 971.
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